Topic Units 1, 2 \& 3	2000		2001		2002		2003		2004		
	I	II	入-								
Significant Figs Scientific Notation											0
\% Calculations		4		1		10				1	N
Volumes of Solids		$\underline{6}$		$\underline{6}$		$\underline{6}$	3	$\underline{6}$		9	\cdots
Linear Relationships	$\underline{2}$		$\underline{2}$		$\underline{2}$			4	$\underline{2}$		\pm
Multiplying out Factorising	$\underline{3}$	$\underline{2}$	17	$\underline{7}$	4		1			$\underline{3 \mathrm{a}} \underline{3 \mathrm{~b}}$ $\underline{8}$	$\frac{2}{3}$
Circles: arcs, sectors, symmetry, chords	4	$\underline{3} 8$		10		4	7	18	3	4	-
Trigonometry Sine Cosine Rules Area of triangle		7		48		18		10		7	-
Simultaneous Equations		$\underline{5}$	3			$\underline{2}$		3		5	-
Graphs, Charts Tables Cumulative Freq Dotplot Boxplot 5 fig summary	5		$\underline{5}$	3	5		4	$\underline{2}$	4		
Statistics: Standard Deviation Cumulative Freq Diag Line of Best Fit Probability	1	1		$\underline{2}$	1	$\underline{3}$	$\underline{2}$	5	1	$\underline{2}$	O
Algebraic Fractions Change of Subject Surds \& Indices	8	9a	$\underline{4} 8$	9a	7	$\underline{9} 11$	6	711	6b	11	
Quadratic Functions Graphs, Formula	6	9b 10	6	$\underline{5} 9 \mathrm{~b}$		57	8	9	$\underline{5}$	$\underline{6}$	$\stackrel{\square}{\text { ¢ }}$
Trigonometry Graphs, Equations	7	11		11	$\underline{3} \underline{6}$	12	$\underline{5}$	12	6a	$\underline{10}$	\bigcirc

Topic Units 1, 2 \& 3	2005		2006		2007		2008		2009	
	I	II								
Significant Figs Scientific Notation										
\% Calculations		1		1		1		1		
Volumes of Solids		7		3	3	5		$\underline{2}$		
Linear Relationships	$\underline{2}$	3	15		$\underline{\underline{1} 11}$		1			
Multiplying out Factorising	$\frac{3 \mathrm{a}}{\underline{3 b}}$		$\underline{2}$	$\underline{6}$	5	7	$\underline{2} 4$			
Circles: arcs, sectors, symmetry, chords		$\underline{5} \underline{9}$		48		$\underline{2} 14$	7			
Trigonometry Sine Cosine Rules		6	46	10		49	$\underline{6}$	$\underline{5}$		
Simultaneous Equations		4		$\underline{2}$	4			4		
Graphs, Charts Tables Cumulative Freq Dotplot Boxplot	4		3			$\underline{3}$	$\underline{5}$			
Statistics: Standard Deviation Cumulative Freq Diag Line of Best Fit Probability	1	$\underline{2}$		5	16	$\underline{6}$	$\underline{3}$	$\underline{3}$		
Algebraic Fractions Change of Subject Surds \& Indices	5	10	$\underline{9} \underline{10}$	7 9	$\underline{9}$	$\frac{10}{12}$		7		
Quadratic Functions Graphs, Formula	$\underline{9}$	8	7	11	7	8	$\underline{9}$	$\underline{6}$		
Trigonometry Graphs, Equations	$\underline{6} 7$	11	8	12	$\underline{8} \underline{10}$	$\underline{13}$	$\underline{8} \underline{10}$	$\underline{8}$		

Topic Applications	2000		2001		2002		2003		2004	
	I	II								
Calculations in a Social Context Pay Tax Loans	$\underline{6}$	10		59	$\underline{2}$	10	1	7		810
Logic Diagrams Speadsheets Networks Flowcharts		$\underline{9}$	3			7	$\underline{6}$	$\underline{9}$	4	$\underline{3}$
Formulae Substitution	7		6		$\underline{6}$		8		6	
Mean from Table Cumulative Freq		11		11	8	12		11		12
Calculations in a Social Context Pay Tax Loans		$\underline{3} 6 \underline{10}$	$\underline{2}$	$\begin{gathered} \frac{4}{11} \\ \hline \end{gathered}$		811		$\underline{6} 8$ $\underline{10}$		
Logic Diagrams Speadsheets Networks Flowcharts	$\underline{5}$		$\underline{5}$	7	8	10	$\underline{8} 9$	7		
Formulae Substitution	$\underline{9}$		6		10		11			
Mean from Table Cumulative Freq		12	10			13	10			
							Return to START page			

FORMULAE LIST

The roots of $a x^{2}+b x+c=0$ are $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Sine rule: $\quad \frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}}$

Cosine rule: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos \mathrm{~A}$ or $\cos \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

Area of a triangle: \quad Area $=\frac{1}{2} a b \sin \mathrm{C}$

Click on tab below to return to grid

Volume of a sphere: \quad Volume $=\frac{4}{3} \pi r^{3}$

Volume of a cone: \quad Volume $=\frac{1}{3} \pi r^{2} h$

Volume of a cylinder: \quad Volume $=\pi r^{2} h$

Standard deviation: $\quad s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}}$, where n is the sample size.

2008 Paper 1

1. A straight line has equation $y=4 x+5$.

State the gradient of this line.

Gradient, $\mathrm{m}=4$
(the number in front of the x term)
2. Multiply out the brackets and collect like terms.

$$
\begin{aligned}
& (3 x+2)(x-5)+8 x \\
& =3 x^{2}-15 x+2 x-10+8 x \\
& =3 x^{2}-5 x-10
\end{aligned}
$$

3. The stem and leaf diagram shows the number of points gained by the football teams in the Premiership League in a season.

$$
\mathrm{n}=20
$$

(a) Arsenal finished 1st in the Premiership with 90 points.

In what position did Southampton finish if they gained 47 points?
(b) What is the probability that a team chosen at random scored less than 44 points?
(a) $12^{\text {th }}$
(b) $5 / 20$ or $1 / 4$
4. (a) Factorise

$$
x^{2}-y^{2}
$$

(b) Hence, or otherwise, find the value of

$$
9 \cdot 3^{2}-0 \cdot 7^{2}
$$

(a) $(x+y)(x-y)$
(b) $(9.3+0.7)(9.3-0.7)$
$=(10)(8.6)$
$=86$

Main Grid
5. In a survey, the number of books carried by each girl in a group of students was recorded.
The results are shown in the frequency table below.

Number of books	Frequency
0	1
1	2
2	3
3	5
4	5
5	6
6	2
7	1

(a) Copy this frequency table and add a cumulative frequency column.
(b) For this data, find:
(i) the median; 1
(ii) the lower quartile; 1
(iii) the upper quartile. $\quad \mathbf{1}$
(c) Calculate the semi-interquartile range. $\mathbf{1}$
(d) In the same survey, the number of books carried by each boy was also recorded.
The semi-interquartile range was $0 \cdot 75$.
Make an appropriate comment comparing the distribution of data for the girls and the boys.

5 (a)

(b) Median (position 13)
$=4$ books
Lower Quartile (position 7) = 3 books
Upper Quartile (position 19) = 5 books
(c) Semi Interquartile range $=($ Upper $Q-$ Lower $Q) \div 2$

$$
\begin{aligned}
& =(5-3) \div 2 \\
& =1
\end{aligned}
$$

(d) The semi interquartile range for boys was 0.75 which is less than the SIQR for girls which was 1 , so boys tended to carry less books.
6. Triangle PQR is shown below.

If $\sin P=\frac{1}{4}$, calculate the area of triangle $P Q R$.

$$
\begin{aligned}
\text { Area } & =1 / 2 \mathrm{qr} \operatorname{sinP} \\
& =1 / 2 \times 20 \times 16 \times 1 / 4 \\
& =10 \times 4 \\
& =40 \mathrm{~cm}^{2}
\end{aligned}
$$

AD is a diameter of a circle, centre O .
B and C are points on the circumference of the circle.
Angle CAD $=25^{\circ}$.
Angle BDA $=46^{\circ}$.
Calculate the size of angle BAC.
$\mathrm{ABD}=90^{\circ}$ (right angled triangle in a semi circle)
Angle BAC $+25^{\circ}+46^{\circ}=180^{\circ}\left(\right.$ sum of angles in a triangle $\left.=180^{\circ}\right)$
So $B A C=109^{\circ}$
8. Part of the graph of $y=a \sin b x^{\circ}$ is shown in the diagram.

State the values of a and b.
$\mathrm{a}=5$ (Amplitude is 5 units)
$b=3\left(\right.$ Period is 120° i.e. $\left.360^{\circ} \div 3\right)$
9. The graph below shows part of a parabola with equation of the form

$$
y=(x+a)^{2}+b
$$

(a) State the values of a and b.
(b) State the equation of the axis of symmetry of the parabola.
(c) The line PQ is parallel to the x-axis.

Find the coordinates of points P and Q .

2
(a) $\mathrm{a}=-5$ and $\mathrm{b}=1($ from min TP of $(5,1))$
(b) $X=5$
(c) When $x=0, \quad y=(0-5)^{2}+1=25+1=26$

Solution

So $P(0,26)$ and $Q(9,26)$ since Q is 4 units to right of axis of symmetry
10. If $\sin x^{\circ}=\frac{4}{5}$ and $\cos x^{\circ}=\frac{3}{5}$, calculate the value of $\tan x^{\circ}$.

$$
\begin{aligned}
& \tan x=\frac{\sin x}{\cos x}=\frac{4}{5} \div \frac{3}{5} \\
& =\frac{4}{5} \times \frac{5}{3} \\
& =\frac{20}{15} \\
& =\frac{4}{3}
\end{aligned}
$$

2008 Paper 2

1. Calculate the compound interest earned when $£ 50000$ is invested for 4 years at 4.5% per annum.
Give your answer to the nearest penny.

NOTE: multiplier is 1.045 this adds on 4.5% per year "to the power 4 " is for four years.
$\begin{aligned} £ 50000 \times(1.045)^{4} & =£ 59625.93003 \\ & =£ 59625.93 \text { (nearest } \mathrm{p} \text {) }\end{aligned}$
2. Jim Reid keeps his washing in a basket. The basket is in the shape of a prism.

The height of the basket is 50 centimetres.
The cross section of the basket consists of a rectangle and two semi-circles with measurements as shown.

(a) Find the volume of the basket in cubic centimetres. Give your answer correct to three significant figures.

Jim keeps his ironing in a storage box which has a volume half that of the basket.

Main Grid

Solution

The storage box is in the shape of a cuboid, 35 centimetres long and 28 centimetres broad.
(b) Find the height of the storage box.

2 (a)
Volume of a prism $=$ area of cross section x length

$$
\begin{aligned}
& =(\text { area of a circle }+ \text { area of rectangle }) \times \text { length } \\
& =\left(\pi r^{2}+L \times b\right) \times \text { length } \\
& =[(\pi \times 12 \times 12)+(24 \times 30)] \times 50 \\
& =[452.389+720] \times 50 \\
& =58619.467 \\
& =58600 \mathrm{~cm}^{3}(3 \text { sig figs })
\end{aligned}
$$

(b) Volume of box $=58600 \div 2=29300 \mathrm{~cm}^{3}$

Volume of cuboid $=$ Ibh

$$
\begin{aligned}
29300 & =35 \times 28 \times \mathrm{h} \\
29300 & =980 \times \mathrm{h} \\
\mathrm{~h} & =29300 \div 980 \\
\mathrm{~h} & =29.897=29.9 \mathrm{~cm}
\end{aligned}
$$

3. The results for a group of students who sat tests in mathematics and physics are shown below.

$$
\begin{array}{l|lllll}
\text { Mathematics (\%) } & 10 & 18 & 26 & 32 & 49 \\
\hline \text { Physics (\%) } & 25 & 35 & 30 & 40 & 41
\end{array}
$$

(a) Calculate the standard deviation for the mathematics test.
(b) The standard deviation for physics was $6 \cdot 8$.

Make an appropriate comment on the distribution of marks in the two tests.

These marks are shown on the scattergraph below.
A line of best fit has been drawn.

(c) Find the equation of the line of best fit.
(d) Another pupil scored 76% in the mathematics test but was absent from the physics test.
Use your answer to part (c) to predict his physics mark.

$$
\sum x=10+18+26+32+49=135
$$

$$
\frac{\left(\sum x\right)^{2}}{n}=\frac{(135)^{2}}{5}=3645
$$

$$
\sum x^{2}=10^{2}+18^{2}+26^{2}+32^{2}+49^{2}=4525
$$

Substituting in to $2^{\text {nd }}$ formula given on exam sheet
Standard deviation: $\quad s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-\Lambda}}=\sqrt{\frac{\sum x^{2}-\left(\sum x\right)^{2} / n}{n-1}}$, where n is the sample size.

$$
\text { (a) } \begin{aligned}
s & =\sqrt{\frac{4525-3645}{5-1}} \\
& =\sqrt{\frac{880}{4}}=\sqrt{220}=14.8
\end{aligned}
$$

(b) The standard deviation was higher for maths marks so these marks are more widely spread compared to the physics marks.
(c) Gradient from graph $=$ up/along $=1 / 2$ so $m=1 / 2$ Intercept = 20

Equation $y=1 / 2 x+20$
Click for
Solutions
(d) physics, $y=1 / 2 \times 76+20=58 \%$
4. Suzie has a new mobile phone. She is charged x pence per minute for calls and y pence for each text she sends. During the first month her calls last a total of 280 minutes and she sends 70 texts. Her bill is $£ 52 \cdot 50$.
(a) Write down an equation in x and y which satisfies the above condition.

The next month she reduces her bill. She restricts her calls to 210 minutes and sends 40 texts. Her bill is $£ 38 \cdot 00$.
(b) Write down a second equation in x and y which satisfies this condition.
(c) Calculate the price per minute for a call and the price for each text sent.
(a) $280 x+70 y=52.50$
(b) $210 x+40 y=38$

Solve simultaneous equations

$$
\begin{array}{rlrl}
280 x+70 y=52.50 & x 4 & 1120 x+280 y & =210 \\
210 x+40 y=38 & x 7 & 1470 x+280 y & =266 \\
\text { subtract } & -350 x & x & =-56 \\
\text { substitute } & 280 x 0.16+70 y & =-56 /-350=0.16(16 p \text { a min }) \\
& y & & =(52.50-44.80) / 70=0.11 \text { (11p per txt) }
\end{array}
$$

5. Triangle DEF is shown below.

It has sides of length $10 \cdot 4$ metres, $13 \cdot 2$ metres and $19 \cdot 6$ metres.
Calculate the size of angle EDF.
Do not use a scale drawing.

$$
\begin{aligned}
\operatorname{Cos} D= & \frac{e^{2}+f^{2}-d^{2}}{2 e f} \\
& =\frac{13.2^{2}+10.4^{2}-19.6^{2}}{2 \times 13.2 \times 10.4} \\
\operatorname{Cos} D & =-101.76 / 274.56=-0.3706 \\
D & =\cos ^{-1}(-0.3706)=111.8^{\circ}
\end{aligned}
$$

6. Solve the equation

$$
5 x^{2}+4 x-2=0
$$

giving the roots correct to 2 decimal places.
Rounding asked for so must be using Quadratic Formula See FORMULA LIST

$$
a=5 \quad b=4 \quad c=-2
$$

$x=\frac{-4 \pm \sqrt{4^{2}-4 \times 5 \times-2}}{2 \times 5}$
$=\frac{-4 \pm \sqrt{ } 56}{10}$
$x=0.348$ or -1.148
$x=0.35$ or -1.15 (2 d.p.)
7. (a) Simplify

$$
\frac{m^{5}}{m^{3}}
$$

(b) Express

$$
2 \sqrt{5}+\sqrt{20}-\sqrt{45}
$$

as a surd in its simplest form.
(a) $\mathrm{m}^{5-3}=\mathrm{m}^{2}$
(b) $2 \sqrt{5}+\sqrt{4 \times 5}-\sqrt{9 \times 5}$
$=2 \sqrt{ } 5+2 \sqrt{ } 5-3 \sqrt{ } 52 \sqrt{ } 5$
$=\sqrt{ } 5$
8. Solve the equation

$$
4 \cos x^{\circ}+3=0, \quad 0 \leq x \leq 360
$$

$4 \cos x^{\circ}=-3$

$$
\begin{aligned}
\cos x^{\circ} & =-3 / 4=0.75 \\
x^{\circ} & =\cos ^{-1}(0.75) \\
& =41.4^{\circ}
\end{aligned}
$$

S	A	V
T	C	V

Cos also positive in $4^{\text {th }}$ quadrant
So $360^{\circ}-41.4^{\circ}=318.6^{\circ}$
9. Two identical circles, with centres P and Q, intersect at A and B as shown in the diagram.

The radius of each circle is 10 centimetres.
The length of the common chord, AB , is 12 centimetres.
Calculate PQ, the distance between the centres of the two circles.
10. Change the subject of the formula

$$
p=q+\sqrt{a}
$$

to a.
Swap sides

$$
\begin{aligned}
q+\sqrt{ } a & =p \\
\sqrt{ } a & =p-q
\end{aligned}
$$

Square both sides

$$
a=(p-q)^{2}
$$

11. Express

$$
\frac{2}{a}-\frac{3}{(a+4)}, \quad a \neq 0, a \neq-4
$$

as a single fraction in its simplest form.

$$
\begin{aligned}
& \frac{2(a+4)}{a(a+4)}-\frac{3 a}{a(a+4)} \\
& =\frac{2 a+8-3 a}{a(a+4)} \\
& =\frac{8-a}{a(a+4)}
\end{aligned}
$$

8. A network diagram is shown below.

Write down the letters which represent the odd nodes.

U and T (have nodes of order 3)
9. Jamie works for a firm which pays its employees a basic salary of $£ 1200$ per month plus commission on sales.
The flowchart below shows how the salaries are calculated.

10. A group of students was asked how many hours they spend studying each week. The histogram below shows the results of the survey.

The same group of students was asked how many hours of television they watch each week.

The results of the survey are shown in the table below.

Time $(h$ hours $)$	Frequency
$0 \leq h<5$	1
$5 \leq h<10$	4
$10 \leq h<15$	9
$15 \leq h<20$	20
$20 \leq h<25$	14
$25 \leq h<30$	12

Main Grid

(a) Using squared paper, draw a histogram to illustrate the results of this survey.
(b) For the histogram you have drawn, estimate the mode to the nearest hour.
(c) Compare the two histograms and comment.

(b) Mode is approx 18 hrs
(c) Mode for studying is about 7 hrs .

This is much less than the time spent watching TV.
11. The sum of the terms of a sequence of numbers is given by the formula

$$
S=\frac{a\left(r^{n}-1\right)}{r-1} .
$$

Calculate S when $a=3, r=2$ and $n=4$.

$$
\begin{aligned}
S & =3\left(2^{4}-1\right) / 2-1 \\
& =3(16-1) / 1 \\
& =3 \times 15 \\
& =45
\end{aligned}
$$

6. Below is a copy of part of David Leblanc's credit card statement.

Southern Star Credit

Name: David Leblanc
Card Number: 4517676723689001
$\begin{aligned} 12 \text { April } 2008 & \text { Balance brought forward } \\ 2 \text { May 2008 } & \text { Payment received }\end{aligned}$

Interest at 1•6\%
5 May 2008 Bon Cave Wines
5 May 2008 Jacques Delicatessen
Balance owed

Minimum payment: 3% of Balance owed or $£ 5$, whichever is greater.
(a) Calculate the amounts which would appear at \mathbf{A}, \mathbf{B} and \mathbf{C}.
(b) David makes the minimum payment.

How much does he pay?

$$
\begin{aligned}
& \mathbf{A}=125-50 \\
&=£ 75 \\
& \mathbf{B}=£ 75+1.6 \% \text { of } £ 75 \\
&=£ 75+£ 1.20 \\
&=£ 76.20 \\
& \mathbf{C}=£ 76.20+£ 62.99+ \\
& £ 15.88 \\
&=£ 155.07 \\
& \text { (b) } \begin{aligned}
& 3 \% \text { of } £ 155.07 \\
&=£ 4.65 \\
& \text { He needs to pay } £ 5 \text { as } \\
& 3 \text { this is the greater } \\
& \text { value. } \\
& 2
\end{aligned}
\end{aligned}
$$

7. Steve Bolton has invested $£ 10000$ in the Brigadoon Building Society. The building society adds 0.4% interest to his account at the start of each month. In addition, Steve deposits $£ 250$ into his account each month. He designs a spreadsheet to calculate the amount of money he has in the bank each month.

Column $\mathrm{B}=$ the amount in his account at the start of each month after interest at $0 \cdot 4 \%$ is added.

Column $\mathrm{C}=$ the amount in his account each month after his monthly deposit of $£ 250$ is paid in.

	A	B	C
1	Brigadoon Building Society		
2			
3	Steve Bolton: Investment Account		
4			
5	Interest rate 0.4\% per month		
6			
7	Amount invested $£ 10,000.00$		
8	Monthly payment $£ 250.00$		
9			
10	Amount	after interest	after deposit
11			
12	January	£10,040.00	£10,290.00
13	February	$£ 10,331.16$	$£ 10,581.16$
14	March	$£ 10,623.48$	$£ 10,873.48$
15	April	£,10,916.98	£11,166.98
16	May	£11,211.65	£11,461.65
17	June	£ $11,507.49$	£11,757.49
18	July	£11,804.52	£12,054.52
19	August	£,12,102.74	£12,352.74
20	September	£,12,402.15	£12,652.15
21	October	£,12,702.76	£12,952.76
22	November	£13,004.57	£13,254.57
23	December		

(a) $=\mathrm{C} 22$ * 1.004
(b) $=$ B23 + 250
(c) $£ 13557.59$

Main Grid

(a) Write down the formula to enter in cell B23 the amount in Steve's account at the start of December after interest has been added.
(b) Write down the formula to enter in cell C23 the amount in his account in December after his monthly deposit of $£ 250$ is paid in.
8. Luljeta Dumani sells carpets. Her gross annual salary for the last year was £ 15425.
The table below shows the rates of tax applicable for last year.

Taxable Income	Rate
On the first $£ 2230$	10%
On the next $£ 32370$	22%
On any income over $£ 34600$	40%

Luljeta's total tax allowance is $£ 5225$.
Calculate her annual tax bill for last year.
Taxable income $=£ 15425-£ 5225=£ 10200$ 10% of $£ 2230=£ 223$

Amount left at $22 \%=£ 10200-£ 2230=£ 7970$ 22% of $£ 7970$
$=£ 1753.40$
Main Grid

Total tax $=£ 223+£ 1753.40$
$=£ 1976.40$
10. Irene works in the local chemist's shop.

One week she works 40 hours at her basic rate of pay and 3 hours overtime at double time.
Her gross pay for that week was $£ 239 \cdot 20$.
Calculate Irene's basic hourly rate of pay.

Total equivalent hours worked $=40+3 \times 2=46$

Rate of pay $=£ 239.20 \div 46$
$=£ 5.20$ per hour

1. The table below shows the results of a survey of First Year pupils. 2007 Paper 1

	Wearing a blazer	Not wearing a blazer
Boys	40	22
Girls	29	9

What is the probability that a pupil, chosen at random from this sample, will be a girl wearing a blazer?

$$
\text { Prob(girl + blazer) }=\frac{29}{100}
$$

Find the equation of the straight line passing through the points $(0,-3)$ and $(-2,-11)$.

Main Grid

Solution

From graph c = -3
Equation of line $y=4 x-3$
3. A tin of tuna is in the shape of a cylinder.

It has diameter 10 centimetres and height 4 centimetres.
Calculate its volume.
Take $\boldsymbol{\pi}=\mathbf{3}$-14.

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =3.14 \times 5 \times 5 \times 4 \\
& =314 \mathrm{~cm}^{3}
\end{aligned}
$$

Main Grid

Solution
4. Find the point of intersection of the straight lines with equations $x+2 y=-5$ and $3 x-y=13$.
4.

$$
\begin{aligned}
x+2 y & =-5 \\
3 x-y & =13
\end{aligned}
$$

$$
\begin{align*}
\Rightarrow x+2 y & =-5 \tag{1}\\
\times 2 \Rightarrow 6 x-2 y & =26 \\
\text { Add } \frac{7 x}{} & =21 \\
x & =3
\end{align*}
$$

put in eq(1) $3+2 y=-5$

$$
2 y=-8
$$

$$
y=-4
$$

Check eq (2) $3 \times 3-(-4)=135$
pt. of intersection $(3,-4)$.
5. Multiply out the brackets and collect like terms.

$$
\begin{aligned}
& \left.\quad(x+3) x^{2}+4 x-12\right) \\
& x^{3}+4 x^{2}-12 x+3 x^{2}+12 x-36 \\
& x^{3}+7 x^{2}-36
\end{aligned}
$$

$$
3
$$

6. (a) Show that the standard deviation of $1,1,1,2$ and 5 is equal to $\sqrt{ } 3$.
(b) Write down the standard deviation of 101, 101, 101, 102 and 105.
(a) $\quad \Sigma x=10$

$$
\begin{aligned}
\frac{(\Sigma x)^{2}}{n} & =\frac{10^{2}}{5}=\frac{100}{5}=20 \\
\Sigma x^{2} & =1^{2}+1^{2}+1^{2}+2^{2}+5^{2}=32 \\
s & =\sqrt{\frac{\sum x^{2}-\frac{(\Sigma x)^{2}}{n}}{n-1}}=\sqrt{\frac{32-20}{4}}=\sqrt{\frac{12}{4}}=\sqrt{3}
\end{aligned}
$$

(b) Answer is $\sqrt{103}$

Since Standard Deviation is a measure of spread from the mean.
7. The graph shown below is part of the parabola with equation $y=8 x-x^{2}$.

(a) By factorising $8 x-x^{2}$, find the roots of the equation

$$
8 x-x^{2}=0
$$

(b) State the equation of the axis of symmetry of the parabola.
(c) Find the coordinates of the turning point.
(a) $8 x-x^{2}=0$
(b) $x=4$ (halfway between roots

$$
x(8-x)=0
$$

$$
\text { (c) } y=8 x-x 2
$$

$$
x=0 \text { or } x=8
$$

$$
=8 x 4-42
$$

$$
=16
$$

Coords $(4,16)$
8. Given that

$$
\cos 60^{\circ}=0 \cdot 5
$$

what is the value of $\cos 240^{\circ}$?

Cos negative in quadrant 3
$240^{\circ}=180^{\circ}+60^{\circ}$
So $\operatorname{Cos} 240^{\circ}=-0.5$
9. A right-angled triangle is shown below.

Using Pythagoras' Theorem, find x.
Express your answer as a surd in its simplest form.

$$
\begin{aligned}
x^{2} & =7^{2}+1^{2} \\
& =49+1 \\
x= & \sqrt{50} \\
= & \sqrt{25} \times \sqrt{2} \\
= & 5 \sqrt{2}
\end{aligned}
$$

Main Grid

Solution
10. (a) Part of the graph of $y=\cos a x^{\circ}$ is shown below.

State the value of a.
$a=$ period $=360 \div 90=4$
1
(b) Part of the graph of $y=\tan b x^{\circ}$ is shown below.

State the value of b.
$b=$ period $=180 \div 90=2$

Main Grid

Solution
11. A straight line is represented by the equation $y=a x+b$. Sketch a possible straight line graph to illustrate this equation when $a=0$ and $b>0$.
$a=0$ means gradient $=0 \quad$ i.e. a horizontal line
$b>0$ means line intercepts above x axis

2007 Paper 1

1. Ian's annual salary is $£ 28400$. His boss tells him that his salary will increase by $2 \cdot 3 \%$ per annum.
What will Ian's annual salary be after 3 years?
Give your answer to the nearest pound.

$$
\begin{aligned}
£ 28400 \times(1.023)^{3} & =£ 30405.02 \\
& =£ 30405 \text { (to the nearest } £)
\end{aligned}
$$

2. The diagram below shows a sector of a circle, centre C .

The radius of the circle is 10.5 centimetres and angle ACB is 118°.

Calculate the length of $\operatorname{arc} \mathrm{AB}$.

Main Grid

$$
\begin{aligned}
\operatorname{Arc} \mathrm{AB}= & \frac{118}{360} \times \pi \times 21 \\
& =21.6 \mathrm{~cm}
\end{aligned}
$$

3. This back-to-back stem and leaf diagram shows the results for a class in a recent mathematics examination.

$$
\mathrm{n}=15 \quad \mathrm{n}=14
$$

\[

\]

(a) A boxplot is drawn to represent one set of data.

Does the boxplot above represent the girls' data or the boys' data?
Main Grid
1
(b) For the other set of data, find:
(i) the median;
(ii) the lower quartile;
(iii) the upper quartile.
(c) Use the answers found in part (b) to construct a second boxplot.
(d) Make an appropriate comment about the distribution of data in the two sets.
(a) Boys' data

Lowest value is 47
(b) (i) $Q_{2}=58$
(ii) $Q_{1}=52$
(iii) $Q_{3}=76$
(c)

(d) The girls' mean is higher 58 instead of 56.

The girls' score has greater Semi IQR. 24 instead of 10 for the boys.

The tangent PQ touches the circle, centre O , at T .
Angle MTP is 77°.
(a) Calculate the size of angle MOT.
(b) The radius of the circle is 8 centimetres.

Calculate the length of chord MT.

4 (a) $\quad \mathrm{OTM}=90^{\circ}-77^{\circ}=13^{\circ}$

Triangle OMT is isosceles so $\mathrm{OMT}=13^{\circ}$

So MOT $=180^{\circ}-\left(13^{\circ}+13^{\circ}\right)=154^{\circ}$
(b) $\quad M T^{2}=8^{2}+8^{2}-\left(2 \times 8 \times 8 \times \operatorname{Cos} 154^{0}\right)$

$$
\begin{aligned}
& =255.75 \\
& =\sqrt{255.75} \\
& =15.99 \mathrm{~cm}
\end{aligned}
$$

5. A glass ornament in the shape of a cone is partly filled with coloured water.

The cone is 24 centimetres high and has a base of diameter 30 centimetres.
The water is 16 centimetres deep and measures 10 centimetres across the top.
What is the volume of the water?
Give your answer correct to 2 significant figures.

Main Grid
5
5. Volume of large care $=\frac{1}{3} \times \pi \times 15^{2} \times 24$

$$
=5654.862
$$

$$
\begin{aligned}
\text { Volume of small cone } & =\frac{1}{3} \times \pi \times 5^{2} \times 8 \\
(\text { at top }) & \\
& =209.44
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume of water } & =\text { large cone }- \text { small cone } \\
& =5654.862-209.44 \\
& =5445.4 \\
& =5400 \mathrm{~cm}^{3}(2 \text { syfigs })
\end{aligned}
$$

6. Tasnim rolls a standard dice with faces numbered 1 to 6 .

The probability that she gets a number less than 7 is
A 0
B $\frac{1}{7}$
C $\frac{1}{6}$
D 1 .

Write down the letter that corresponds to the correct probability.

$$
\operatorname{Prob}(7)=\frac{\text { favourable }}{\text { possible }}=\frac{6}{6}=1
$$

So choice 'D'

Main Grid

Solution
7. (a) Factorise fully

$$
2 x^{2}-18
$$

(b) Simplify

$$
\frac{(2 x+5)^{2}}{(2 x-1)(2 x+5)} .
$$

(a) $2 x^{2}-18$

$$
\begin{array}{ll}
=2\left(x^{2}-9\right) & \\
=2(x-3)(x+3) & \text { difference of two squares }
\end{array}
$$

(b) $\frac{(2 x+5)^{2}}{(2 x-1)(2 x+5)}$ cancel by $(2 x+5)$
$=\frac{2 x+5}{2 x-1}$
8. Solve the equation

$$
2 x^{2}-6 x-5=0
$$

giving the roots correct to one decimal place.

$$
\begin{aligned}
& 2 x^{2}-6 x-5=0 \\
& a=2 b=-6 \quad c=-5 \\
& x=\frac{-(-6) \pm \sqrt{(-6)^{2}-(4 \times 2 \times-5)}}{2 \times 2} \\
& =\frac{6 \pm \sqrt{36-(-40)}}{4}
\end{aligned}
$$

$$
=\frac{6+\sqrt{76}}{4} \text { or } \frac{6-\sqrt{76}}{4}
$$

$$
=3.68 \quad \text { or } \quad-0.679
$$

$$
=3.7 \quad \text { or }-0.7 \quad \text { to } 1 \mathrm{~d} . \mathrm{p}
$$

9. The diagram shows two blocks of flats of equal height.

A and B represent points on the top of the flats and C represents a point on the ground between them.
To calculate the height, h, of each block of flats, a surveyor measures the angles of depression from A and B to C.

Main Grid

Solution

Calculate the height, h, in metres.

$$
\begin{aligned}
& \text { 9. } A \frac{30}{38^{\prime}}{ }^{46^{\circ}} B \quad 180-(38+46)=96^{\circ} \\
& \frac{b}{\operatorname{Sin} B}=\frac{c}{\operatorname{Sin} C}
\end{aligned}
$$

$\frac{b}{\operatorname{Sin} 46}=\frac{30}{\operatorname{Sin} 96} \quad$ (cross multiply)
$\mathrm{bSin} 96=30 \operatorname{Sin} 46$

$$
\mathrm{b}=\frac{30 \operatorname{Sin} 46}{\operatorname{Sin} 96}=21.7 \mathrm{~m}
$$

$$
\begin{aligned}
\substack{\left.38^{\circ}\right) \\
27.5 \\
h y} & \begin{aligned}
\left(S^{\circ} H\right) & C^{A} H T^{\circ} A \\
\operatorname{Sin} 38^{\circ} & =\frac{h}{2.77} \\
h & =21.7 \times \operatorname{Sin} 38^{\circ} \\
& =13.4 \mathrm{~m}
\end{aligned}
\end{aligned}
$$

10. Express $\frac{5 p^{2}}{8} \div \frac{p}{2}$ as a fraction in its simplest form.

$$
\begin{aligned}
& \frac{5 p^{2}}{8} \div \frac{p}{2} \\
= & \frac{5 p^{2}}{8} \times \frac{2}{p} \\
= & \frac{10 p^{2}}{8 p} \\
= & \frac{5 p}{4}
\end{aligned}
$$

$$
\text { Cancelling by } p \text { and } 2
$$

Main Grid

Solution
11. Change the subject of the formula

$$
K=\frac{m^{2} n}{p}
$$

to m.

$$
\begin{aligned}
\frac{m^{2} n}{p} & =K \\
m^{2} n & =K p \\
m^{2} & =\frac{K p}{n} \\
m & =\sqrt{\frac{K p}{n}}
\end{aligned}
$$

Main Grid

Solution
12. Simplify the expression below, giving your answer with a positive power.

$$
\begin{aligned}
& =m^{5+-8}=m^{5-8}=m^{-3} \\
& =\frac{1}{m^{3} \times m^{-8}}
\end{aligned}
$$

$$
2
$$

13. Solve the equation

$$
5 \tan x^{\circ}-6=2, \quad 0 \leq x<360 .
$$

$5 \tan x=2+6$
$\tan x=\frac{8}{5}$

$$
\begin{aligned}
x & =\tan ^{-1}\left(\frac{8}{5}\right) \\
& =58^{\circ}
\end{aligned}
$$

Main Grid
Tan positive in quadrant 1 and 3

$$
180^{\circ}+58^{\circ}=238^{\circ}
$$

Solution

$$
x=58^{\circ} \text { or } 238^{\circ}
$$

14. A mirror is shaped like part of a circle.

The radius of the circle, centre C , is 24 centimetres.
The height of the mirror is 35 centimetres.
Calculate the length of the base of the mirror, represented in the diagram by AB.

Pythagoras shorter side

$$
\begin{aligned}
& x^{2}=24^{2}-11^{2}=576-121=455 \\
& x=\sqrt{455}=21.3 \\
& \text { mirror base }=2 x=2 \times 21.3=42.6 \mathrm{~cm}
\end{aligned}
$$

1. The temperature, in degrees Celsius, at mid-day in a seaside town and the sales, in pounds, of umbrellas are shown in the scattergraph below.
A line of best fit has been drawn.

(a) Find the equation of the line of best fit.
(b) Use your answer to part (a) to predict the sales for a day when the temperature is 30 degrees Celsius.
(a)

$$
\begin{aligned}
& m=\frac{115-70}{15-5}=\frac{45}{10}=4.5 \\
& c=130 \quad \text { from graph } \\
& s=4.5 T+130
\end{aligned}
$$

$$
(b) s=4.5 \times 30+130
$$

$$
=£ 265.00
$$

2. Multiply out the brackets and collect like terms.

$$
\begin{aligned}
& (2 y-3)\left(y^{2}+4 y-1\right) \\
& (2 y-3)\left(y^{2}+4 y-1\right) \\
= & 2 y^{3}+8 y^{2}-2 y-3 y^{2}-12 y+3 \\
= & 2 y^{3}+8 y^{2}-2 y-3 y^{2}-12 y+3 \\
= & 2 y^{3}+5 y^{2}-14 y+3
\end{aligned}
$$

3. In a factory, the number of workers absent each day is recorded for 21 days. The results are listed below.

19	22	19	22	20	21	17
19	21	16	20	19	18	18
20	20	23	19	18	17	19

(a) Construct a dotplot for this data. 2
(b) Find:
(i) the median; 1
(ii) the lower quartile; 1
(iii) the upper quartile. 1
(c) What is the probability that, on a day chosen at random from this sample, more than 18 workers were absent?
3.(a)

(b) (i) median ($\left.11^{\text {th }}\right)=19$
(ii) Lower Quartile $=18$
(iii) Upper Quartile $=20.5$
(c) $\operatorname{Prob}(>18$ absent $)=\frac{15}{21}=\frac{5}{7}$
4.

$$
\text { Area }=\frac{1}{2} a b \operatorname{Sin} C
$$

Calculate the area of triangle ABC if $\sin \mathrm{B}=\frac{2}{3}$.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} a c \operatorname{Sin} B \\
& =\frac{1}{2} \times 10 \times 12 \times \frac{2}{3} \\
& =40 \mathrm{~cm}^{2}
\end{aligned}
$$

5. A straight line is represented by the equation $2 y+x=6$.
(a) Find the gradient of this line.
(b) This line crosses the y-axis at $(0, c)$.

Find the value of c.
$2 y+x=6$

$$
2 y=-x+6
$$

$$
y=-\frac{1}{2} x+3
$$

gradient
$m=-\frac{1}{2}$
Intercept
$c=3$
6. Write the following in order of size, starting with the smallest.

$$
\sin 0^{\circ} \quad \sin 30^{\circ} \quad \sin 200^{\circ}
$$

Give a reason for your answer.
$\operatorname{Sin} 200^{\circ}, \operatorname{Sin}^{\circ}, \operatorname{Sin} 30^{\circ}$
See graph

7.

The equation of the parabola in the above diagram is

$$
y=(x-3)^{2}-4
$$

(a) State the coordinates of the minimum turning point of the parabola.
(b) State the equation of the axis of symmetry of the parabola.
(c) A is the point $(1,0)$. State the coordinates of B .
(a) $(3,-4)$
(b) $x=3$
(c) $(5,0)$

8. The graph shown below has an equation of the form $y=\cos (x-a)^{\circ}$.

Write down the value of a.

$$
y=\operatorname{Cos}(x-30)^{\circ} \quad a=30^{\circ}
$$

Phase shift of 30° i.e. Cos graph has been 'moved' 30° to the right.

9. Evaluate

$$
\begin{gathered}
16^{\frac{7}{7}} \\
16^{\frac{3}{4}}=\left(16^{\frac{1}{4}}\right)^{3}=(2)^{3}=8
\end{gathered}
$$2

10.

$$
2 \sqrt{3} \mathrm{~cm}
$$

The rectangle above has length $2 \sqrt{ } 3$ centimetres and breadth $\sqrt{6}$ centimetres.
Calculate the area of the rectangle.
Express your answer as a surd in its simplest form.

$$
\begin{aligned}
\text { Area } & =2 \sqrt{3} \times \sqrt{6}=2 \sqrt{18} \\
& =2 \sqrt{9} \times \sqrt{2} \\
& =2 \times 3 \times \sqrt{2} \\
& =6 \sqrt{2}
\end{aligned}
$$

1. The value of a boat decreased from $£ 35000$ to $£ 32200$ in one year.
(a) What was the percentage decrease?
(b) If the value of the boat continued to fall at this rate, what would its value be after a further 3 years?
Give your answer to the nearest hundred pounds.
(a) $\begin{aligned} \text { \% decrease } & =\frac{\text { decrease }}{\text { original price }} \times 100 \\ & =\frac{2800}{35000} \times 100 \\ & =8 \%\end{aligned}$
(b)

$$
\begin{aligned}
& 32200 \times(0.92)^{3}=£ 25073.75 \\
& \text { to nearest } £ 100 \text { is } £ 25100
\end{aligned}
$$

2. Solve algebraically the system of equations

$$
\begin{aligned}
& 4 x+2 y=13 \\
& 5 x+3 y=17
\end{aligned}
$$

$4 x+2 y=13$	$x 3$	eq1
$5 x+3 y=17$	$x 2$	eq2

$12 x+6 y=39$
$10 x+6 y=34$
$2 x=5 \quad$ subtracting

$$
x=2.5
$$

Sub into eq1

$$
\begin{aligned}
4 \times 2.5+2 y & =13 \\
2 y & =13-10=3 \\
y & =\frac{3}{2}
\end{aligned}
$$

Check eq2 $5 \times 2.5+3 \times \frac{3}{2}=12.5+4.5=17 \quad V$
3. A child's toy is in the shape of a hemisphere with a cone on top, as shown in the diagram.
The toy is 10 centimetres wide and 16 centimetres high.
Calculate the volume of the toy. Give your answer correct to 2 significant figures.

3

$$
\begin{aligned}
\text { Volume of hemisphere } & =\frac{1}{2} \times \frac{4}{3} \times \pi \times 5^{3} \\
& =261.799 . \mathrm{cm}^{3} \\
\text { Volume of care } & =\frac{1}{3} \pi r^{2} \mathrm{~h}
\end{aligned}
$$

where $h=16-5=11 \mathrm{~cm}$

$$
\begin{aligned}
& =\frac{1}{3} \times \pi \times 5^{2} \times 11 \\
& =287.979
\end{aligned}
$$

$$
\begin{aligned}
\text { Total volume } & =261.799+287.979 \\
& =549.778 \\
& =550 \mathrm{~cm}^{3}(25 . f .)
\end{aligned}
$$

4. The diagram shows the base of a compact disc stand which has the shape of part of a circle.

- The centre of the circle is O.
- EF is a chord of the circle.
- EF is 18 centimetres.
- The radius, OF, of the circle is 15 centimetres.

$$
x^{2}=15^{2}-9^{2}=225-81=144
$$

$$
x=\sqrt{144}=12
$$

Total Length $=12+15=27 \mathrm{~cm}$
Pythagoras shorter side
5. A new central heating system is installed in a house.

Sample temperatures, in degrees Celsius, are recorded below.

19	21	23	21	19	20

(a) For this sample data, calculate:
(i) the mean; 1
(ii) the standard deviation. 3

Show clearly all your working.
The target temperature for this house is $20^{\circ} \mathrm{Celsius}$. to be operating effectively if the mean temperature is within $0.6^{\circ} \mathrm{Celsius}$ of the target temperature and the standard deviation is less than $2^{\circ} \mathrm{Celsius}$.
(b) Is the system operating effectively?

Give reasons for your answer.

$$
\begin{array}{ll}
\sum x & =19+21+23+21+19+20=123 \\
\begin{array}{ll}
\text { (Mean) } \bar{x} & =\frac{\sum x}{n}=\frac{123}{6}=20.5 \\
\frac{\left(\sum x\right)^{2}}{n} & =\frac{(123)^{2}}{6}=2521.5 \\
\sum x^{2} & =19^{2}+21^{2}+23^{2}+21^{2}+19^{2}+20^{2}=2533
\end{array} \\
s=\sqrt{\frac{2533-2521.5}{6-1}} \\
=\sqrt{\frac{11.5}{5}}=\sqrt{2.3}=1.52
\end{array}
$$

Yes system is operating effectively as
Mean is $20.5^{\circ} \mathrm{C}$ which is $<20.6^{\circ} \mathrm{C}$ (max temp allowed)
Standard deviation is $1.52^{\circ} \mathrm{C}$ which is $<2^{\circ} \mathrm{C}$ (max standard deviation allowed)

$$
4 p^{2}-49 . \quad 2
$$

Difference of two squares

$$
\begin{aligned}
& 4 p^{2}-49 \\
= & (2 p+7)(2 p-7)
\end{aligned}
$$

7. Express

$$
\frac{3}{(x+1)}-\frac{1}{(x-2)} \quad, \quad x \neq-1, \quad x \neq 2
$$

as a single fraction in its simplest form.

$$
\begin{aligned}
& \frac{3}{x+1}-\frac{1}{x-2} \\
= & \frac{3(x-2)}{(x+1)(x-2)}-\frac{x+1}{(x+1)(x-2)} \\
= & \frac{3 x-6-x-1}{(x+1)(x-2)} \\
= & \frac{2 x-7}{(x+1)(x-2)}
\end{aligned}
$$

8. The diagram shows the penalty area in a football pitch.

All measurements are given in yards.

The penalty spot is marked at point P.
$Q R$ is an arc of a circle, centre P, radius 10 yards.
The width of the penalty area is 18 yards and the distance of the penalty spot from the goal line is 12 yards, as shown.
(a) Calculate the size of angle QPR.
(b) Calculate the length of arc QR.

$a^{\circ}=1 / 2$ of angle QPR
(a) $a^{0}=\cos ^{-1}\left(\frac{6}{10}\right)=53.1^{0}$

$$
\text { So } \mathrm{QPR}=2 \times \mathrm{a}^{0}=106.2^{0}
$$

(b) $\quad \operatorname{arc} Q R=\frac{106.2}{360} \times \pi \times 20$
$=18.54 y d s$
9. Change the subject of the formula

$$
\frac{x}{c}+a=b
$$

to x.

x
 $\underline{x}+a=b$

C

$$
\begin{aligned}
\frac{x}{c} & =b-a \\
x & =c(b-a)
\end{aligned}
$$

10. The diagram below shows the position of three campsites A, B and C.

Alan sets off from campsite A on a bearing of 100° at an average speed of $5 \cdot 6$ kilometres per hour.
At the same time Bob sets off from campsite B on a bearing of 070°.
After 3 hours they both arrive at campsite C.
Who has the faster average speed and by how much?

Speed $=\mathrm{D} \div \mathrm{T}=17.61 \div 3=5.87 \mathrm{~km} / \mathrm{h}$
Bob is faster by $5.87-5.6=0.27 \mathrm{~km} / \mathrm{h}$
11. A cuboid is shown below.

It has length $(x+5)$ metres, breadth x metres, height 1 metre and volume 24 cubic metres.
(a) Show that

$$
x^{2}+5 x-24=0 .
$$

(b) Using the equation in part (a), find the breadth of the cuboid.
(a) $V=l b h=x(x+5) \times 1$

$$
=x^{2}+5 x
$$

so

$$
\begin{aligned}
x^{2}+5 x & =24 \\
x^{2}+5 x-24 & =0 \quad \text { as required }
\end{aligned}
$$

(b) $(x+8)(x-3)=0$

$$
x=78 \text { or } x=3
$$

not valid
So breadth is 3 m
12. The arms on a wind turbine rotate at a steady rate.

Main Grid
Solution

The height, h metres, of a point A above the ground at time t seconds is given by the equation

$$
h=8+4 \sin t^{\circ} .
$$

(a) Calculate the height of point A at time 30 seconds.
(b) Find the two times during the first turn of the arms when point A is at a height of 10.5 metres.

12(a) $h=8+4 \operatorname{Sin} 30$

$$
=10 \mathrm{~m}
$$

(b) $8+4 \operatorname{Sin} t=10.5$

$$
\begin{aligned}
4 \operatorname{Sin} t & =2.5 \\
\operatorname{Sin} t & =\frac{2.5}{4}=0.625 \\
t & =\sin ^{-1}(0.625)=38.7 \mathrm{~s}
\end{aligned}
$$

Sin t positive in $2 n d$ quad $:(180-38.7)=141.3 s$

2005 Paper 1

ALL questions should be attempted.

1. The stem and leaf diagram below shows the heights of a group of children.

$$
\begin{aligned}
& 12 \left\lvert\, \begin{array}{lllll}
1 & 2 & 4 & 5 & 9
\end{array}\right. \\
& 13 \left\lvert\, \begin{array}{llllll}
13 & 0 & 1 & 5 & 7 & 8
\end{array}\right. \\
& 14 \begin{array}{lllll}
14 & 2 & 8 & 9
\end{array} \\
& 15 \left\lvert\, \begin{array}{llll}
1 & 1 & 2
\end{array}\right. \\
& \mathrm{n}=18 \\
& 12 \mid 1 \text { represents } 121 \text { centimetres }
\end{aligned}
$$

What is the probability that a child chosen at random from this group has a height less than 130 centimetres?

$\operatorname{prob}(n<130)=\frac{5}{18}$

(a) $m=\frac{-8}{4}=-2$
$c=8$
$y=-2 x+8$
(b) $(2,4)$
(a) Find the equation of the straight line shown in the diagram.
(b) Find the coordinates of the point where the line $y=2 x$ meets this line.
3. (a) Multiply out the brackets and collect like terms.

$$
(4 x+2)(x-5)+3 x
$$

$$
\begin{aligned}
& (4 x+2)(x-5)+3 x \\
= & 4 x^{2}+2 x-20 x-10+3 x \\
= & 4 x^{2}-15 x-10
\end{aligned}
$$

(b) Factorise

$$
\begin{aligned}
& 2 p^{2}-5 p-12 . \\
& 2 p^{2}-5 p-12 \\
= & (2 p+3)(p-4)
\end{aligned}
$$

4. For a group of freezers in a shop, the volume, in litres, of each one is listed below.

$$
\begin{array}{llllllll}
78 & 81 & 91 & 75 & 85 & 83 & 84 & 78
\end{array}
$$

(a) For the given data, calculate:
(i) the median;
(ii) the lower quartile; $\quad \mathbf{1}$
(iii) the upper quartile.

One of the numbers from the above list was accidentally missed out. A boxplot was then drawn and is shown below.

(b) Which number was missed out?

Give a reason for your answer.

(i) median $=82$
(ii) $\quad \mathrm{Q} 1=78$
(iii) $\quad \mathrm{Q} 3=84.5$
(b) 85 missed out gives new median as 81 and Q3 as 84 as shown

5. Simplify

$$
\begin{aligned}
& k^{8 \times\left(k^{2}\right)^{-3}} \\
& k^{8} \times k^{2 \times-3} \\
= & k^{8} \times k^{-6} \\
= & k^{8+(-6)} \\
= & k^{2}
\end{aligned}
$$

6. Given that

$$
\tan 45^{\circ}=1
$$

what is the value of $\tan 135^{\circ}$?
$\tan 135^{\circ}=\tan \left(180^{\circ}-45^{\circ}\right)=-1$
-1 because $\tan 135^{\circ}$ is negative in 2 nd quadrant
7. Sketch the graph of

$$
y=\sin 2 x^{\circ}, \quad 0 \leq x \leq 360
$$

8. A rectangle has length $(x+2)$ centimetres and breadth x centimetres.

(a) Write down an expression for the area of the rectangle.

$$
\text { Area }=\text { length } \times \text { breadth }=x(x+2)=x^{2}+2 x
$$

A square has length $(x+1)$ centimetres.

$$
(x+1) \mathrm{cm}
$$

(b) The area of the square above is greater than the area of the rectangle. By how much is it greater?

$$
\text { Area }=(x+1)(x+1)=x^{2}+2 x+1
$$

So square is greater than rectangle by $1 \mathrm{~cm}^{2}$
9. The diagram below shows part of the graph of $y=36-(x-2)^{2}$.

(a) $(2,36)$

(b) $x=2$
(a) State the coordinates of the maximum turning point.
(b) State the equation of the axis of symmetry.

The line $y=20$ is drawn.
It cuts the graph of $y=36-(x-2)^{2}$ at R and S as shown below.
Since axis of symmetryis $\mathrm{x}=2$
R is 4 units to the left of axis of symmetry R ($-2,20$)

(c) S is the point $(6,20)$. Find the coordinates of R .

1. In the evening, the temperature in a greenhouse drops by 4% per hour. At 8 pm the temperature is 28° Celsius. What will the temperature be at 11 pm ?

Final temp $=28 \times(0.96)^{3}$

$$
=24.8^{\circ} \mathrm{C}
$$

2. In a bakery, a sample of six fruit loaves is selected and the weights, in grams, are recorded.

$$
\begin{array}{llllll}
395 & 400 & 408 & 390 & 405 & 402
\end{array}
$$

For the above data the mean is found to be 400 grams.
(a) Calculate the standard deviation. Show clearly all your working.
(b) New methods are introduced to ensure more consistent weights. Another sample is then taken and the mean and standard deviation found to be 400 grams and $5 \cdot 8$ grams respectively.
Are the new methods successful?
Give a reason for your answer.

$$
\begin{array}{ll}
\sum x & =395+400+408+390+405+402=2400 \\
(\text { Mean }) \bar{x} & =\frac{\sum x}{n}=\frac{2400}{6}=20.5 \\
\frac{\left(\sum x\right)^{2}}{n} & =\frac{(2400)^{2}}{6}=960000 \\
\sum x^{2} & =395^{2}+400^{2}+408^{2}+390^{2}+405^{2}+402^{2}=960218
\end{array}
$$

$$
s=\sqrt{\frac{960218-960000}{6-1}}
$$

$$
=\sqrt{\frac{218}{5}}=\sqrt{43.6}=6.60
$$

(b) Yes, because the mean weights are exactly the same and the standard deviation is less, $5.8<6.6$ So spread is less. More consistent weights.
3. A straight line has equation $3 y=12-4 x$.

Find the coordinates of the point where it crosses the x-axis.

On x axis $y=0$
$0=12-4 x$
$4 \mathrm{x}=12$
$x=3$

Coord is $(3,0)$
4. A jeweller uses two different arrangements of beads and pearls.

The first arrangement consists of 2 beads and 5 pearls and has an overall length of $5 \cdot 2$ centimetres.
The second arrangement consists of 3 beads and 2 pearls and has an overall length of 5.6 centimetres.
Find the length of one bead and the length of one pearl.

$2 b+5 p=5.2$	$x 3$
$3 b+2 p=5.6$	$x 2$

$6 b+15 p$	$=15.6$
subtract $\quad 10+4 p$	$=11.2$
$11 p$	$=4.4$
p	$=0.4$

Substitute into first equation

$$
2 b+5 \times 0.4=5.2
$$

$$
2 b=5.2-2
$$

$$
2 b=3.2
$$

$$
b=1.6
$$

Check with second equation $3 \times 1.6+2 \times 0.4=4.8+0.8=5.6$

So 1 bead +1 pearl $=0.4+1.6=2.0 \mathrm{~cm}$
5. The diagram below shows a sector of a circle, centre C.

The radius of the circle is 12.5 centimetres and angle DCE is 110°. Calculate the area of the sector CDE.
Area of Sector $=\frac{110}{360} \times \pi \times 12.5$
$=149.989$
$=150 \mathrm{~cm}^{2}$
Main Grid
6. In the diagram below three towns, Holton, Kilter and Malbrigg are represented by the points H, K and M respectively.

A helicopter flies from Holton for 22 kilometres on a bearing of 070° to Kilter. It then flies from Kilter for 30 kilometres on a bearing of 103° to Malbrigg. The helicopter then returns directly to Holton.
(a) (i) Calculate the size of angle HKM.
(ii) Calculate the total distance travelled by the helicopter.

Do not use a scale drawing.
(b) A climber is reported missing somewhere in the triangle represented by HKM in the diagram.
Calculate the area of this triangle.
(a) (i) $70^{\circ}+180^{\circ}=250^{\circ}$
(ii) Cosine Rule

$$
\begin{aligned}
\mathrm{k}^{2} & =\mathrm{m}^{2}+\mathrm{n}^{2}-(2 \times \mathrm{m} \times \mathrm{n} \times \operatorname{CosK}) \\
& =22^{2}+30^{2}-\left(2 \times 22 \times 30 \times \operatorname{Cos} 250^{\circ}\right) \\
& =1835 \\
\mathrm{k} & =\sqrt{ } 1835=42.8 \mathrm{~km}
\end{aligned}
$$

Total distance travelled $=22+30+42.8$

$$
=94.8 \mathrm{~km}
$$

(b) Area of Triangle $=1 / 2 \times h \times m \times \operatorname{SinK}$

$$
\begin{aligned}
& =1 / 2 \times 22 \times 30 \times \sin 250^{\circ} \\
& =310.1 \mathrm{~km}^{2}
\end{aligned}
$$

[NOTE: ignore negative sign]
7. A pharmaceutical company makes vitamin pills in the shape of spheres of radius 0.5 centimetres.
(a) Calculate the volume of one pill. Give your answer correct to two significant figures.

The company decides to change the shape of each pill to a cylinder.

(b) The new pill has the same volume as the original and its diameter is 1.4 centimetres.

Calculate the height of the new pill.
(a) Vol of sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \pi \times(0.5)^{3} \\
& =0.52359 \\
& =0.52 \quad(2 \mathrm{sig} \mathrm{figs})
\end{aligned}
$$

(b) Vol of Cylinder $=\pi r^{2} h$

$$
\begin{aligned}
h & =\frac{V}{\pi r^{2}} \quad\left(\text { Vol cyl }=\text { vol sphere }=0.52 \mathrm{~cm}^{3}\right) \\
& =\frac{0.52}{\pi \times 0.7^{2}} \\
& =0.3377 \\
\text { height } & =0.34 \mathrm{~cm}
\end{aligned}
$$

8. Solve the equation

$$
4 x^{2}-7 x+1=0
$$

giving the roots correct to one decimal place.

$$
\begin{aligned}
& 4 x^{2}-7 x+1=0 \\
& a=4 \quad b=-7 \quad c=1 \\
& x= \frac{-(-7) \pm \sqrt{(-7)^{2}-(4 \times 4 \times 1)}}{2 \times 4} \\
&= \frac{7 \pm \sqrt{49-16}}{8} \\
&= \frac{7+\sqrt{33}}{8} \text { or } \frac{7-\sqrt{33}}{8} \\
&= 1.59 \quad \text { or } 0.156 \\
&= 1.6 \quad \text { or } 0.16 \quad \text { to } 1 \mathrm{~d} . \mathrm{p} .
\end{aligned}
$$

9. Points A, B and C lie on the circumference of a circle, centre O .

Triangle ABC is equilateral with sides of length 11 centimetres as shown in the diagram.
(a) Write down the size of angle OBC.
(b) Calculate the length of the radius OB .

$$
\begin{aligned}
& \text { (b) } 60^{\circ}+2=30^{\circ} \\
& \text { (b) } \operatorname{Cos} B
\end{aligned}=\frac{a d j}{h y p}=\frac{5.5}{x}
$$

10. (a) Express $\frac{7}{\sqrt{2}}$ as a fraction with a rational denominator.
(b) Express $\frac{a}{b} \times \frac{3 b}{a^{2}}$ as a fraction in its simplest form.
(c) Change the subject of the formula

$$
\begin{equation*}
p=q+2 r^{2} \quad \text { to } r \tag{3}
\end{equation*}
$$

(a) $\frac{7}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{7 \sqrt{2}}{2}$
(c) $\mathrm{q}+2 \mathrm{r}^{2}=p$

$$
2 \mathrm{r}^{2}=p-q
$$

(b) $\frac{a}{b} \times \frac{3 b}{a^{2}}=\frac{3 a b}{b a^{2}}=\frac{3}{a}$ cancelling by a and b

$$
\begin{aligned}
& \mathrm{r}^{2}=\frac{p-q}{2} \\
& \mathrm{r}^{2}=\sqrt{\frac{p-q}{2}}
\end{aligned}
$$

11. (a) Solve the equation

$$
\begin{equation*}
7 \cos x^{\circ}-5=0, \quad 0 \leq x<360 \tag{3}
\end{equation*}
$$

(b) Simplify

$$
\tan x^{\circ} \cos x^{\circ}
$$

(a) $7 \operatorname{Cos} x-5=0$

$$
\begin{aligned}
7 \operatorname{Cos} x & =5 \\
\operatorname{Cos} x & =\frac{5}{7}
\end{aligned}
$$

$$
x=\operatorname{Cos}^{-1}\left(\frac{5}{7}\right)
$$

(b) $\operatorname{Tan} x \times \operatorname{Cos} x$

$$
\begin{aligned}
& =\frac{\operatorname{Sin} x}{\operatorname{Cos} x} \times \operatorname{Cos} x \\
& =\operatorname{Sin} x
\end{aligned}
$$

$$
=44.4^{0}
$$

Also positivein the 4th quadrant $x=(360-44.4)$

$$
=315.6^{0}
$$

1. In a class test, the following marks were recorded.

(3)
2. $y=2 x+1$

Intercept = 1 (where line crosses y axis)
Gradient $=2$ (measure from graph)

RP is a tangent to the circle, centre O, with a point of contact T.
The shaded angle PTQ $=24^{\circ}$.
Calculate the size of angle OPT.
4. The number of chocolates in each box from a sample of 25 boxes was counted.
The results are displayed in the dotplot below.

(a) For this sample find:
(i) the median;
(ii) the lower quartile; 1
(iii) the upper quartile.
(b) Use the data from this sample to construct a boxplot.
(c) In a second sample of boxes, the semi-interquartile range was 1.5 .

Make an appropriate comment about the distribution of data in the two samples.

4 (a) median $(13 h)=50$

$$
\begin{aligned}
& 41=49 \\
& 93=\frac{51+52}{2}=51 \frac{1}{2}
\end{aligned}
$$

(b)

(c) Here Semi $I Q R=\frac{51 \frac{1}{2}-49}{2}=\frac{2 \frac{1}{2}}{2}=1.25$

The second sample hasa higher IQR, so move variation in samples
5. William Watson's Fast Foods use a logo based on parts of three identical parabolas.

This logo is represented on the diagram below.

The first parabola has turning point P and equation $y=(x+2)^{2}-16$.
(a) $(-2,-16)$
(a) State the coordinates of P .
(b) If R is the point $(2,0)$, find the coordinates of Q , the minimum turning point of the second parabola.

2
(b) $(4,-16$

1
(c) Find the equation of the parabola with turning point S .
(c) $2+8+4=14$
(14, -16)
Solution
6. (a) Part of the graph of $\mathrm{y}=b \cos a x^{\circ}$ is shown in the diagram.

$$
y=b \cos a x
$$

State the values of a and b

$$
\begin{array}{ll}
b=4 & \text { (amplitude) } \\
a=3 & (\text { period }=360 \div 3=120)
\end{array}
$$

(b) Express $\sqrt{12}+5 \sqrt{3}-\sqrt{27}$ as a surd in its simplest form.

$$
\begin{aligned}
& \sqrt{12}+5 \sqrt{3}-\sqrt{27} \\
= & 2 \sqrt{3}+5 \sqrt{3}-3 \sqrt{3} \\
= & 4 \sqrt{3}
\end{aligned}
$$

1. The average Scottish house price is $£ 77900$.

The average price is expected to rise by $2 \cdot 5 \%$ per month. What will the average Scottish house price be in 3 months?
Give your answer correct to three significant figures.
House price $=£ 77900 \times(1.025)^{3}$
$=£ 83889.78$
$=£ 83900$ to 3 sig figs
2. The heights, in millimetres, of six seedlings are given below.

$$
\begin{array}{llllll}
15 & 18 & 14 & 17 & 16 & 19
\end{array}
$$

(a) Calculate:
(i) the mean; 1
(ii) the standard deviation; 3
of these heights.
Show clearly all your working.
(b) Later the same six seedlings are measured again.

Each has grown by 4 millimetres.
State:
(i) the mean; 1
(ii) the standard deviation; 1
of the new heights.
2. (a)

$$
\begin{aligned}
& \bar{x}=\frac{\sum x}{n}=\frac{15+18+14+17+16+19}{6}=\frac{99}{6}=16.5 . \\
& \left(\sum x\right)^{2}=(99)^{2}=9801 \quad \frac{\left(\sum x\right)^{2}}{n}=\frac{9801}{6}=1633.5 \\
& \Sigma x^{2}=15^{2}+18^{2}+\cdots .19^{2}=1651 \\
& S=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}=\sqrt{\frac{1651-1633.15}{5}}=\sqrt{\frac{175}{5}} \\
& =\sqrt{3.5}=1.87
\end{aligned}
$$

(b) $\bar{x}=\frac{99+6 \times 4}{6}=\frac{123}{6}=20.5$
$S=1.87$ (unchanged)
3. (a) Multiply out the brackets and collect like terms.

$$
\begin{aligned}
& 5 x+(x-4)(3 x+1) \\
= & 5 x+3 x^{2}-12 x+x-4 \\
= & 3 x^{2}-6 x-4
\end{aligned}
$$

(b) Factorise

$$
\begin{gathered}
3 x^{2}-7 x+2 \\
=(3 x-1)(x-2)
\end{gathered}
$$2

A circle, with centre O and radius 12 centimetres, is cut into 5 equal sectors. Calculate the perimeter of sector OAB .
5. A sports centre charges different entrance fees for adults and children.
(a) One evening 14 adults and 4 children visited the sports centre. The total collected in entrance fees was $£ 55 \cdot 00$.

Let $£ x$ be the adult's entrance fee and $£ . y$ be the child's entrance fee.
Write down an equation in x and y which represents the above condition.
(b) The following evening 13 adults and 6 children visited the sports centre. The total collected in entrance fees was $£ 54 \cdot 50$.

Write down a second equation in x and y which represents the above condition.
(c) Calculate the entrance fee for an adult and the entrance fee for a child.
5. (a) $14 x+4 y=55 \quad \times 3$
(b) $13 x+6 y=54.50 \times 2$
(c) $42 x+12 y=165$

Sub $\begin{aligned} \frac{26 x+12 y}{16 x} & =109 \\ & =56\end{aligned}$

$$
x=3.5
$$

put into (1)

$$
\begin{aligned}
14 \times 3.5+4 y & =55 \\
4 y & =55-49 \\
4 y & =6 \\
y & =1.5
\end{aligned}
$$

Adult tichet $E 3.50$. Child's ticket $=01.50$
6. Solve the equation $2 x^{2}+7 x-3=0$, giving the roots correct to one decimal place.

$$
\begin{gathered}
2 x^{2}+7 x-3=0 \\
a=2 \quad b=7 \quad c=-3
\end{gathered}
$$

$$
x=\frac{-7 \pm \sqrt{(7)^{2}-(4 \times 2 \times-3)}}{2 \times 2}
$$

$$
=\frac{-7 \pm \sqrt{49-(-24)}}{4}
$$

$$
=\frac{-7+\sqrt{73}}{4} \text { or } \frac{-7-\sqrt{73}}{4}
$$

$$
=0.386 \quad \text { or }-3.886
$$

$$
=0.4 \quad \text { or }-3.9 \quad \text { to } 1 \mathrm{~d} . \mathrm{p}
$$

7. A garden, in the shape of a quadrilateral, is represented in the diagram below.

Calculate:
(a) the length of the diagonal BD ;

Do not use a scale drawing
(b) the area of the garden.

7 ',ar Cosine Rule:-

$$
\begin{aligned}
B D^{2} & =b^{2}+d^{2}-2 b d \operatorname{Cos} A \\
& =11.1^{2}+7.8^{2}-\left(2 \times 11.1 \times 7.8^{2} \times \operatorname{Cos} 110^{\circ}\right) \\
& =243.27 \\
B D & =15.6 \mathrm{~m}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Area ABD } & =\frac{1}{2} \times 11.1 \times 7.8 \times \operatorname{Sin} 110^{\circ} \\
& =40.68 \mathrm{~m}^{2} \\
\text { ATen DBC } & =\frac{1}{2} \times 9.3 \times 15.6 \times \operatorname{Sin} 78^{\circ} \\
& =70.95 \mathrm{~m}^{2} \\
\text { Total wee } & =40.68+70.95 \\
& =111.6 \mathrm{~m}^{2}
\end{aligned}
$$

8. The diagram shows an L-shaped metal plate.

$\mathrm{PQ}=\mathrm{ST}=2$ metres
$\mathrm{TU}=\mathrm{UP}=x$ metres
(a) Show that the area, A square metres, of the metal plate is given by

$$
A=4 x+4
$$

(b) The area of the metal plate is 18 square metres.

Find x.

(a) Area $A=$ length x breadth $=2(2+x)=4+2 x$

Area $B=2 x$
Total area $=\mathrm{A}+\mathrm{B}$

$$
\begin{aligned}
& =4+2 x+2 x \\
& =4+4 x
\end{aligned}
$$

(b) \quad Area $=4+4 x=18$

So $4+4 x=18$

$$
\begin{aligned}
4 x & =18-4 \\
4 x & =14 \\
x & =14 \div 4=3.5 m
\end{aligned}
$$

9. Perfecto Ice Cream is sold in cones and cylindrical tubs with measurements as shown below.

Both the cone and the tub of ice cream cost the same.
Which container of ice cream is better value for money?
Give a reason for your answer.
9. Cone

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \times \pi \times 5.2^{2} \times 20 \\
& =566.3 \mathrm{~cm}^{3}
\end{aligned}
$$

Cylinder

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi \times 5.5^{2} \times 5.8 \\
& =551.2 \mathrm{~cm}^{3}
\end{aligned}
$$

Cone better value as you get move ice cream for your money
10. Solve the following equation for $0 \leq x \leq 360$.

$$
7 \sin x^{\circ}-3=0
$$

10.

$$
\begin{aligned}
7 \operatorname{Sin} x-3 & =0 \\
\operatorname{Sin} x & =\frac{3}{7}=0.42857 \\
x & =\operatorname{Sin}^{-1}(0.42857) \\
& =25.4^{\circ} .
\end{aligned}
$$

Sin positive in 1st and and quadrant So $x=254^{\circ}$.
and $x=180-25.4^{\circ}=154.6^{\circ}$

$$
x=25.4^{\circ} \text { or } 154.0^{\circ}
$$

11. (a) Express $\frac{4}{x+3}+\frac{3}{x}, x \neq-3, x \neq 0$,
as a single fraction in its simplest form.
(b) Change the subject of the formula $m=\frac{3 x+2 y}{p}$ to x.
(c) Simplify $\frac{3 a^{5} \times 2 a}{a^{2}}$

$$
\text { II (a) } \begin{aligned}
& \frac{4}{x+3}+\frac{3}{x} \\
\Rightarrow & \frac{4 x}{x(x+3)}+\frac{3(x+3)}{x(x+3)} \\
\Rightarrow & \frac{4 x+3 x+9}{x(x+3)} \\
= & \frac{7 x+9}{x(x+3)} \\
= & \text { (b) } m=\frac{3 x+2 y}{p} \\
\Rightarrow & m p=3 x+2 y . \\
\Rightarrow & m p-2 y=3 x \\
& \Rightarrow \frac{m p-2 y}{3}=x \quad \Rightarrow x=\frac{m p-2 y}{3} \\
& \text { (c) } \frac{3 a^{5} \times 2 a}{a^{2}}=\frac{6 a^{6}}{a^{2}}=6 a^{4} .
\end{aligned}
$$

1. Multiply out the brackets and collect like terms.

$$
\begin{aligned}
& (2 a-b)(3 a+2 b) \\
& (2 a-b)(3 a+2 b) \\
= & 6 a^{2}-3 a b+4 a b-2 b^{2} \\
= & 6 a^{2}+a b-2 b^{2}
\end{aligned}
$$

2. Two spinners are used in an experiment.

The table below shows some of the possible outcomes when both spinners are spun and allowed to come to rest.

	1	2	3	4	5
Red	R,1	R,2			
Yellow	$\mathrm{Y}, 1$				
Blue	$\mathrm{B}, 1$				
Green	$\mathrm{G}, 1$				

(a) Copy and complete the table.
(b) What is the probability that one spinner comes to rest on red and the other on an even number?
2.

(b)

$$
\begin{aligned}
& 20 \\
&= \frac{1}{10} \\
&=
\end{aligned}
$$

3. The diagram shows a cone.

The height is 12 centimetres and the radius of the base 10 centimetres.
Calculate the volume of the cone.
Take $\boldsymbol{\pi}=\mathbf{3 \cdot 1 4}$.

$$
\begin{aligned}
\text { Volume } & =\frac{1}{3} \times \pi \times r^{2} \times h=\frac{1}{3} \times 3.14 \times 10^{2} \times 12 \\
& =3.14 \times 100 \times 4 \\
& =1256 \mathrm{~cm}^{3} \quad \text { Main Grid }
\end{aligned}
$$

4. A hotel books taxis from a company called Quickcars.

The receptionist notes the waiting time for every taxi ordered over a period of two weeks.

The times are recorded in the stem and leaf diagram shown below.
Waiting time (minutes)

0	6	7		
1	2	3	4	
2	5	6	9	9
3	2	5	7	
4	2	4		
$n=14$				

(a) For the given data, calculate:
(i) the median;
(ii) the lower quartile;1
(iii) the upper quartile. 1
(b) Calculate the semi-interquartile range. 1

In another two week period, the hotel books taxis from a company called Fastcabs.
The semi-interquartile range for FASTCABS is found to be 2.5 minutes.
(c) Which company provides the more consistent service?

Give a reason for your answer.
4.

$$
\begin{aligned}
\text { (a) } \left.)_{1}\right) \varphi_{2}=\frac{n_{1}}{2}=\frac{14+1}{2}=7.5 \text { beater } 7 k .8 \mathrm{~A} \\
Q_{2}=\frac{26+2 a}{2}=27 \frac{1}{2}
\end{aligned}
$$

(ii) $Q_{1}=13$
(iii) $\varphi_{3}=35$.
(b) $S I Q R=\frac{Q 3-Q_{1}}{2}=\frac{35-13}{2}=\frac{22}{2}=11$
(c) Fast cabs because SIQR is munch lower so less spread out.
5. Part of the graph of $y=a \sin b x^{\circ}$ is shown in the diagram.

$\mathrm{a}=3 \quad$ (amplitude 3 x 'normal' height)
State the values of a and $b . \quad \mathrm{b}=2 \quad($ period $=360 \div 2=180$
6. (a) Express $\frac{\sqrt{40}}{\sqrt{2}}$ as a surd in its simplest form.
(b) Simplify $\frac{2 x+2}{(x+1)^{2}}$.
6. (a) $\begin{aligned} \frac{\sqrt{40}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{40 \times 2}}{2}=\frac{\sqrt{4} \times \sqrt{20}}{2} & =\sqrt{20} . \\ & =2 \sqrt{5}\end{aligned}$
(b) $\frac{2 x+2}{(x+1)^{2}}=\frac{2(x \not 1)}{(x+1)(x+1)}=\frac{2}{x+1}$.
7.

C is the centre of two concentric circles.
AB is a tangent to the smaller circle and a chord of the larger circle.
The radius of the smaller circle is 6 centimetres and the chord $A B$ has length 16 centimetres.
Calculate the radius of the larger circle.

7

$B C$ is hypotamseof \triangle It's a pigthag triple 6,8, 20
So $B C^{\prime}=10 \mathrm{~cm}$. (radhis of lages circle)
8. (a) Factorise $7+6 x-x^{2}$.
(b) Hence write down the roots of the equation

$$
7+6 x-x^{2}=0
$$

(c) The graph of $y=7+6 x-x^{2}$ is shown in the diagram.

Find the coordinates of the turning point.

8 (a) $7+6 x-x^{2}$ factorises to

$$
(7-x)(1+x)
$$

(b) Roots are; $\quad x=7$ and $x=-1$
(c Turning Point halfway between -1 and 7 .

$$
\text { i.e. } x=3
$$

So

$$
\begin{aligned}
y & =7+(6 \times 3)-\left(3^{2}\right) \\
& =7+18-9 \\
& =16
\end{aligned}
$$

Coords of Max T.P. $(3,15)$

The tangent, MN, touches the circle, centre O , at L .
Angle $\mathrm{JLN}=47^{\circ}$.
Angle KPL $=31^{\circ}$.
Find the size of angle KLJ.
$\mathrm{OLN}=90^{\circ}$
$\mathrm{PLJ}=90^{\circ}-47^{\circ}=43^{\circ}$
$\mathrm{PKL}=90^{\circ}$
PLK $=180^{\circ}-\left(90^{\circ}+31^{\circ}\right)=59^{\circ}$
$K L J=P L K+P L J$
$=43^{\circ}+59^{\circ}=102^{\circ}$
2. A sample of shoppers was asked which brand of washing powder they preferred.
The responses are shown below.

Washing Powder	Frequency
Dazzle	250
Cyclo	375
Surfer	125
Cleano	250

Construct a pie chart to illustrate this information. Show all your working.
2.

$$
\begin{aligned}
& D_{\text {avile }}=250 \div 1000 \times 360^{\circ}=90^{\circ} \quad \text { T8tal }=1000 . \\
& \text { Cyclo }=375 \div 1000 \times 360^{\circ}=135^{\circ} \\
& \text { Surter }=125 \div 1000 \times 360=45^{\circ} \\
& \text { Cleano }=250 \div 1000 \times 360=90^{\circ}
\end{aligned}
$$

3. Seats on flights from London to Edinburgh are sold at two prices, $£ 30$ and $£ 50$.
On one flight a total of 130 seats was sold.
Let x be the number of seats sold at $£ 30$ and y be the number of seats sold at $£ 50$.
(a) Write down an equation in x and y which satisfies the above condition.

The sale of the seats on this flight totalled $£ 6000$.
(b) Write down a second equation in x and y which satisfies this condition.
(c) How many seats were sold at each price?
3. (a) $x+y=130$
(b) $30 x+50 y=6000$
(c)
6010×50

$$
\begin{aligned}
50 x+50 y & =6500 \\
30 x+50 y & =6000 \\
20 x+x & =500 \\
\text { So } \quad y & =105
\end{aligned}
$$

25 tichets at $\in 30$ 105 tichets at $\in 50$.
4. A bath contains 150 litres of water.

Water is drained from the bath at a steady rate of 30 litres per minute. The graph of the volume, V litres, of water in the bath against the time, t minutes, is shown below.

Write down an equation connecting V and t.

$$
\begin{aligned}
& (0,150) \quad 2 d(5,0) \\
& M=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{150-0}{0-5} \\
& =-30 .
\end{aligned}
$$

$t=\frac{150}{30}=S_{\mathrm{nn}}$.
Equation $\quad V=-30 t+150$
5. A gardener grows tomatoes in his greenhouse.

The temperature of the greenhouse, in degrees Celsius, is recorded every day at noon for one week.

$$
\begin{array}{lllllll}
17 & 22 & 25 & 16 & 21 & 16 & 16
\end{array}
$$

(a) For the given temperatures, calculate:
(i) the mean;
(ii) the standard deviation.

Show clearly all your working.
For best growth, the mean temperature should be $(20 \pm 5)^{\circ} \mathrm{C}$ and the standard deviation should be less than $5^{\circ} \mathrm{C}$.
(b) Are the conditions in the greenhouse likely to result in best growth? Explain clearly your answer.

$$
\text { 5. a.(1) } \begin{aligned}
& \bar{x}=\frac{\sum x}{n}=\frac{133}{7}=19 \\
& \text { (ii) } \begin{aligned}
\left(\sum x\right)^{2} & =133^{2}=17689 \quad\left(\frac{\left.\sum x\right)^{2}}{n}=\frac{17689}{7}=2527\right. \\
& \sum x^{2}=17^{2}+22^{2}+25^{2}+16^{2}+21^{2}+16^{2}+16^{2}=2607 \\
5 & =\sqrt{\frac{2607-2527}{7-1}} \\
& =\sqrt{\frac{80}{6}} \\
& =3.65
\end{aligned}
\end{aligned}
$$

(b) Yes, mean temp well within range spread of temps $3.65^{\circ} \mathrm{C}$ is less than $5^{\circ} \mathrm{C}$ so that's fine too.

The height of the trough is 25 centimetres.
The cross-section of the trough consists of a rectangle and two semi-circles with measurements as shown.

(a) Find the volume of the garden trough in cubic centimetres. Give your answer correct to two significant figures.

A new design of garden trough is planned by the manufacturer.

The height of the trough is 20 cm .
The uniform cross-section of this trough is a quarter of a circle. The volume of the trough is $30000 \mathrm{~cm}^{3}$.
(b) Find the radius of the cross-section.

$$
\begin{aligned}
& \text { 6. (a) Area of cosssectiox = Rectanglet Circle } \\
& =(30 \times 46)+\left(\pi \times 15^{2}\right) \\
& =2086.86 \mathrm{~cm}^{2} \\
& V=A h=2086.86 \times 25 \\
& =52171 \\
& =52000 \mathrm{~cm}^{3} \text { (} 2 \text { Sigtigs) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& V=30000 \quad h=20 \mathrm{~cm} \\
& A=\frac{k}{n}=\frac{30000}{20}=1500 \mathrm{~cm}^{2} \\
& A=\pi r^{2} \\
& r^{2}=\frac{A}{\pi}=\frac{1500}{\pi}=477.46 \\
& r=\sqrt{47746} \\
& =21.85
\end{aligned}
$$

Radins $=22 \mathrm{~cm}(2$ sigtigs $)$.
7. Change the subject of the formula

$$
\begin{aligned}
y=a x^{2}+c & \text { to } x . \\
y & =a x^{2}+c \\
a x^{2}+c & =y \\
a x^{2} & =y-c \\
x^{2} & =\frac{y-c}{a} \\
x & =\sqrt{\frac{y-c}{a}}
\end{aligned}
$$

8. The diagram below shows a big wheel at a fairground.

The wheel has sixteen chairs equally spaced on its circumference.
The radius of the wheel is 9 metres.
As the wheel rotates in an anticlockwise direction, find the distance a chair travels in moving from position T to position P in the diagram.

$$
\begin{aligned}
C & =\pi d \\
& =3.14 \times 18 \\
& =56.52
\end{aligned}
$$

Distance travelled $=\frac{7}{16} \times 56.52$

$$
=24.7 \mathrm{~m}
$$

9. Solve the equation

$$
2 x^{2}+4 x-9=0, \quad 2 x^{2}+4 x-9=0
$$

giving the roots correct to one decimal place $a=2 \quad b=4 \quad c=-9$

$$
\begin{aligned}
& x=\frac{-4 \pm \sqrt{(4)^{2}-(4 \times 2 \times-9)}}{2 \times 2} \\
& =\frac{-4 \pm \sqrt{16-(-72)}}{4} \\
& =\frac{-4+\sqrt{88}}{4} \text { or } \frac{-7-\sqrt{88}}{4} \\
& =1.37 \quad \text { or }-3.37 \\
& =1.4 \quad \text { or }-3.4 \quad \text { to } 1 \mathrm{~d} . \mathrm{p} .
\end{aligned}
$$

10. The sketch shows a parallelogram, PQRS .

(a) Calculate the size of angle PQR. Do not use a scale drawing.
(b) Calculate the area of the parallelogram.
11. (0)

$$
\begin{aligned}
\operatorname{Cos} Q=\frac{p^{2}+r^{2}-q^{2}}{2 p r} & =\frac{11.2^{2}+8.4^{2}-12.6^{2}}{2 \times 11.2 \times 8.4} \\
& =0.1979 \\
Q & =\operatorname{Cos}^{-1}(0.1974)=78.58 \\
& =78.6^{\circ}
\end{aligned}
$$

(b) Area of $P Q R=P R S$.

$$
\begin{aligned}
\text { Area PQR } & =\frac{1}{2} \times 11.2 \times 8.4 \times \operatorname{Sin} 78.6 \\
& =46.109 \\
\text { Total crea } & =46.109 \times 2=92.2 \mathrm{~cm}^{2}
\end{aligned}
$$

11. (a) Express

$$
a^{\frac{2}{3}}\left(a^{\frac{2}{3}}-a^{-\frac{2}{3}}\right)
$$

in its simplest form.
(b) Express

$$
\frac{a}{x}-\frac{b}{y}, \quad x \neq 0, \quad y \neq 0
$$

as a fraction in its simplest form.
$I I(a)$.

$$
\begin{aligned}
& a^{\frac{2}{3}}\left(a^{\frac{2}{3}}-a^{-\frac{2}{3}}\right) \\
= & a^{\frac{4}{3}}-a^{0} \\
= & a^{43}-1
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{a}{x}-\frac{b}{y} \\
= & \frac{a y}{x y}-\frac{b x}{x y} \\
= & \frac{a y-b x}{x y}
\end{aligned}
$$

12. (a) Solve the equation

$$
2 \tan x^{\circ}+7=0, \quad 0 \leq x<360
$$

(b) Prove that

$$
\sin ^{3} x^{\circ}+\sin x^{\circ} \cos ^{2} x^{\circ}=\sin x^{\circ} .
$$

12 (a) $\quad 2 \tan x+7=0$

$$
\begin{aligned}
2 \tan x & =-7 \\
\tan x & =-\frac{7}{2}=-3.5 \\
x & =\tan ^{-1}(-3.5)
\end{aligned}
$$

Ante angle $A=\tan ^{-1}(3.5)=74.1^{\circ}$
tank negative in 2 nd $2 d 4$ th Quadrants
Ind Glad $180-A=180^{\circ}-74.1=105.9^{\circ}$
$4 x^{2}$ quad $360-A=360^{\circ}-74.1^{\circ}=285.9$
(b) $\sin ^{3} x+\sin x \cos ^{2} x=\operatorname{Sin} x$

$$
\begin{equation*}
\sin ^{2} x+\cos ^{2} x=1 \tag{Sin}
\end{equation*}
$$

which is the for all $x \in R$..

1. In a tournament a group of golfers recorded the following scores.

74	70	71	73	75	71	73	72
72	75	71	76	74	72	70	73

(a) Construct a frequency table from the above data and add a cumulative frequency column.
(b) What is the probability that a golfer chosen at random from this group recorded a score of less than 72?

| To (a) Scores | Freq | | Cam Freq |
| :---: | :---: | :---: | :---: | :---: |
| 70 | 11 | 2 | 2 |
| 71 | 111 | 3 | 5 |
| 72 | 111 | 3 | 8 |
| 73 | 111 | 3 | 11 |
| 74 | 11 | 2 | 13 |
| 75 | 11 | 2 | 15 |
| 76 | 1 | 1 | 16 |

(b) $\frac{5}{16}$

Find the equation of the straight line shown in the diagram.
$m=1 / 2$
$c=5$

Equation: $\quad y=1 / 2 x+5$

Part of the graph of $y=\cos x^{\circ}$ is shown above.
If $\cos 60^{\circ}=0 \cdot 5$, state two values for x for which $\cos x^{\circ}=-0 \cdot 5,0 \leq x \leq 360$.
4. Multiply out the brackets and collect like terms.

$$
\begin{aligned}
& (x-3)\left(x^{2}+4 x-1\right) \\
& (x-3)\left(x^{2}+4 x-1\right) \\
= & x^{3}+4 x^{2}-x-3 x^{2}-12 x+3 \\
= & x^{3}+x^{2}-13 x+3
\end{aligned}
$$

5. A sample of students was asked how many times each had visited the cinema in the last three months.
The results are shown below.

4	5	4	1	4	3	2	2	4	6	2
3	4	4	1	3	1	2	3	1	1	

(a) From the above data, find the median, the lower quartile and the upper quartile.
(b) Construct a boxplot for the data.
(c) The same sample of students was asked how many times each had attended a football match in the same three months.
The boxplot below was drawn for this data.

Compare the two boxplots and comment.
$5(a)$

$$
\begin{aligned}
& n=21 \\
& \text { median }=\frac{21+1}{2}=11 \text { th posit in } \\
& \phi_{2}=3 \\
& q_{1}=\frac{1+2}{2}=1.5 \\
& q_{3}=4 .
\end{aligned}
$$

21111

61

(c) Wider range $=9-0=9$ and same with $I Q R=6$ Compared wite first data where range was only $6-1=5$ the $I Q R=4-1.5=2.5$
6.

The equation of the parabola in the above diagram is

$$
y=(x-1)^{2}-16 .
$$

(a) State the coordinates of the minimum turning point of the parabola.
(b) State the equation of the axis of symmetry of the parabola.
(c) The parabola cuts the x-axis at A and B. Find the length of AB.
6. (a) $(1,-16)$
(b) $x=1$
(c) x-axis where $y=0$.

So $(x-1)^{2}-16=0$
$x^{2}-2 x+1-16=0$
$x^{2}-2 x-15=0$
$(x-5)(x+3)=0$
$x=5, x=-3$
Length $A B=5-(-3)=8$ units
7. (a) Express $\sqrt{45}-2 \sqrt{5}$ as a surd in its simplest form.
(b) Express as a fraction in its simplest form

$$
\frac{1}{x^{2}}+\frac{1}{x}, \quad x \neq 0 .
$$2

7. (a)

$$
\begin{aligned}
\sqrt{45}-2 \sqrt{5}=\sqrt{9} \times \sqrt{5}-255 & =3 \sqrt{5} .2 \sqrt{5} \\
& =\sqrt{5}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{1}{x^{2}}+\frac{1}{x} \\
= & \frac{1}{x^{2}}+\frac{x}{x^{2}} \\
= & \frac{1+x}{x^{2}}
\end{aligned}
$$

1. The sketch shows a triangle, ABC .

Calculate the area of the triangle.
2. Solve algebraically the system of equations

$$
\begin{aligned}
& 3 x-2 y=11 \\
& 2 x+5 y=1 .
\end{aligned}
$$

2.

$$
\begin{aligned}
3 x-2 y=11 \quad \stackrel{x}{\Rightarrow} \quad 6 x-4 y & =22 \\
2 x+5 y & \left.=1 \quad \begin{array}{rl}
6 & 6 x+15 y
\end{array}\right)=3 \\
\text { Sub }-19 y & =19 \\
y & =-1 \\
\Rightarrow \text { gut } y & =-1 \text { in to equ(1) } \\
3 x-(2-1) & =11 \\
3 x & =11-2 \\
x & =3
\end{aligned}
$$

Check: $2 \times 3+5 \times 1=6-5=1$
So $(3,-1)$ is the solution
3. (a) The price, in pence, of a carton of milk in six different supermarkets is shown below.

$$
\begin{array}{llllll}
66 & 70 & 89 & 75 & 79 & 59
\end{array}
$$

Use an appropriate formula to calculate the mean and standard deviation of these prices.
Show clearly all your working.
(b) In six local shops, the mean price of a carton of milk is 73 pence with a standard deviation of 17.7.
Compare the supermarket prices with those of the local shops.

$$
\begin{aligned}
& \text { 3. (a) } \bar{x}=\frac{\sum x}{n}=\frac{438}{6}=73 \quad \frac{\left(\sum x\right)^{2}}{n}=\frac{(438)^{2}}{6}=31974 \\
& \sum x^{2}=66^{2}+70^{2}+89^{2}+75^{2}+79^{2}+59^{2}=32524 \\
& S=\sqrt{\frac{32524-31974}{6-1}}=\sqrt{\frac{550}{5}}=\sqrt{110}=10.49
\end{aligned}
$$

(b) $\bar{x}=73 \rho \quad s=17.7$
mean price is the same
much wider spread of prices $17.7>10.5$
4. A pendulum travels along an arc of a circle, centre C .

The length of the pendulum is 20 centimetres.
The pendulum swings from A to B .
The length of the arc AB is 28.6 centimetres.
Find the angle through which the pendulum swings from A to B.
4.

$$
\begin{aligned}
\text { Circumference of "circle" } & =\pi d \\
& =3.14 \times 40 \\
& =125.6 \mathrm{~cm} \\
\text { Fraction of arcle }=\frac{28.6}{125.6} & =0.227707
\end{aligned}
$$

Thus fraction of angle at centre

$$
\begin{aligned}
& =0.227707 \times 360 \\
& =81.97
\end{aligned}
$$

pendulum swings $\simeq 82^{\circ}$
5. (a) (i) Factorise completely

$$
3 y^{2}-6 y .
$$

(ii) Factorise

$$
y^{2}+y-6
$$

(b) Hence express $\frac{3 y^{2}-6 y}{y^{2}+y-6}$ in its simplest form.

$$
\text { 5.(a) (1) } 3 y^{2}-6 y=3 y(y-2)
$$

(ii) $\begin{gathered}y^{2}+y-6 \\ (y+3)(y-2)\end{gathered}$
(b) $\frac{3 y^{2}-6 y}{y^{2}+y-6}=\frac{3 y(y-2)}{(y+3)(y-2)}=\frac{3 y}{y+3}$
6. A container to hold chocolates is in the shape of part of a cone with dimensions as shown below.

Calculate the volume of the container.
Give your answer correct to one significant figure.
6. Volume required $=$

$$
\begin{aligned}
\text { Volume } & =\left(\frac{1}{3} \pi \times 8^{2} \times 32\right)-\left(\frac{1}{3} \pi \times 5^{2} \times 20\right) \\
& =2143.57-523.3 \\
& =1620.24 \\
& =2000 \mathrm{~cm}^{3} \text { to } 1 \text { sigtig }
\end{aligned}
$$

7. Solve the equation

$$
2 x^{2}+3 x-1=0,
$$

$$
2 x^{2}+3 x-1=0
$$

giving your answers correct to one decimal place. $a=2 b=3 c=-1$

$$
\begin{aligned}
& x=\frac{-3 \pm \sqrt{(3)^{2}-(4 \times 2 \times-1)}}{2 \times 2} \\
& =\frac{-3 \pm \sqrt{9-(-8)}}{4} \\
& =\frac{-3+\sqrt{17}}{4} \text { or } \frac{-3-\sqrt{17}}{4} \\
& =0.28 \quad \text { or }-1.78 \\
& =0.3 \quad \text { or }-1.8 \quad \text { to } 1 \text { dip. } .
\end{aligned}
$$

8. The diagram shows two positions of a surveyor as he views the top of a flagpole.

From position A, the angle of elevation to T at the top of the flagpole is 33°.
From position B, the angle of elevation to T at the top of the flagpole is 25°.
The distance AB is 80 metres and the height of the surveyor to eye level is 1.6 metres.

Find the height of the flagpole.
8.

$$
180-(33+25)=
$$

$$
\begin{aligned}
\frac{a}{\operatorname{Sin} A} & =\frac{t}{\operatorname{Sin} T} \\
\Rightarrow \quad a \operatorname{Sin} T & =t \operatorname{Sin} A \\
a & =\frac{t \operatorname{Sin} A}{\operatorname{Sin} T} \\
& =\frac{80 \times \operatorname{Sin} 33^{\circ}}{\operatorname{Sin} 122^{\circ}} \\
& =51.38 \mathrm{~m}
\end{aligned}
$$

Using $\sin ^{\circ} H T^{\circ} A$

Use $S^{0} H$
$O_{p p}=H_{y p} \times \sin 25^{\circ}$
$=51.38 \times \sin 25^{\circ}$

$$
=21.71
$$

Total height of pole

$$
\begin{aligned}
& =21.71+1.6 \\
& =23.3 \mathrm{~m}
\end{aligned}
$$

9. The diagram below shows a circular cross-section of a cylindrical oil tank.

In the figure below,

- O represents the centre of the circle
- $P Q$ represents the surface of the oil in the tank
- PQ is 3 metres
- the radius OP is 2.5 metres.

Find the depth, d metres, of oil in the tank.
q_{0}

Pythagoras:

$$
\begin{aligned}
& x^{2}=2.5^{2}-1.5^{2} \\
& x^{2}=6.25-2.25 \\
& x^{2}=4 \\
& x=2
\end{aligned}
$$

So $d=2.5-2=0.5 m$
10. The population of Newtown is 50000 .

The population of Newtown is increasing at a steady rate of 5% per annum. The population of Coaltown is 108000 .

The population of Coaltown is decreasing at a steady rate of 20% per annum. How many years will it take until the population of Newtown is greater than the population of Coaltown?
10.

$$
\begin{array}{llll}
50000 \times(1.05)^{n} & n=4 & \text { Pop. } 60775 \\
& n=3 & \text { Pop } 57881 \\
108000 \times(0.8)^{n} & & n=4 & \text { Pop } 44237 \\
& n=3 & \text { Pop }=55296
\end{array}
$$

After 3 yrs Newton will have the greater population.
11. (a) Simplify

$$
6 x^{\frac{3}{2}} \div 2 x^{\frac{1}{2}}
$$

(b) Change the subject of the formula

$$
r=3 p+2 t
$$

to p.

I1 (a) $\quad 6 x^{\frac{3}{2}} \div 2 x^{\frac{1}{2}}=\frac{6}{2} \times x^{3 / 2 \frac{1}{2}}=3 x^{\frac{2}{2}}$ $=3 x$
(b)

$$
\begin{array}{r}
r=3 p+2 t \\
3 p+2 t=r \\
3 p=r-2 t \\
p=\frac{r-2 t}{3}
\end{array}
$$

12. At the carnival, the height, H metres, of a carriage on the big wheel above the ground is given by the formula

$$
H=10+5 \sin t^{\circ},
$$

t seconds after starting to turn.

(a) Find the height of the carriage above the ground after 10 seconds.
(b) Find the two times during the first turn of the wheel when the carriage is 12.5 metres above the ground.
12. (a) $H=10+5 \sin 10^{\circ}=10.87 \mathrm{~m}$
(b) $H=2.5 \mathrm{~m}$
\Rightarrow

$$
\begin{aligned}
10+5 \text { Sin } t & =12.5 \\
5 \text { Sit } & =2.5 \\
\text { Sin } t & =0.5
\end{aligned}
$$

Acute angle $A=\operatorname{Sin}^{-1}(0.5)=30 \mathrm{~s}$
pritue in Ind quad; $x=180-30=150 \mathrm{~s}$
S. 12.5 m at 30 s and 150 s

1. Factorise

$$
x^{2}+2 x-15
$$

1.

$$
\begin{aligned}
& x^{2}+2 x-15 \\
& (x+5)(x-3)
\end{aligned}
$$

2.

Find the equation of the straight line.
2.

$$
m=\frac{40}{4}=10 \quad c=5 \quad \text { Equ } \quad y=10 x+5
$$

3. Find the point of intersection of the straight lines with equations $2 x+y=5$ and $x-3 y=6$.
4.

$$
\begin{aligned}
& 2 x+y=5 \quad-10 \quad 2 \quad 2 x+y=5 \\
& x-3 y=6 \\
& -x^{2} \Rightarrow \begin{aligned}
2 x-6 y & =12 \\
7 y & =-7
\end{aligned} \\
& y=-1
\end{aligned}
$$

putinto equ(1)

$$
\begin{aligned}
2 x-1 & =5 \\
2 x & =6 \\
x & =3
\end{aligned}
$$

Check: $\quad 3-(3 x-1)=3+3=6$
pt. of intersection $(3,-1)$.

$$
P=R^{2} b-5
$$

Change the subject of the formula to R.

4

$$
\begin{aligned}
P & =R^{2} b-5 \\
R^{2} b-5 & =\rho \\
R^{2} b & =P+5 \\
R^{2} & =\frac{P+5}{b} \\
R & =\frac{P+5}{b}
\end{aligned}
$$

5. The stem and leaf diagram shows the amounts of money spent by customers in a shop.

$$
\begin{array}{r|rrrrrrrr}
2 & 1 & 4 & 4 & & & & \\
3 & 0 & 1 & 5 & 5 & 8 & & & \\
4 & 1 & 2 & 3 & 5 & 6 & 9 & & \\
5 & 0 & 1 & 2 & 3 & 5 & 8 & 9 & 9 \\
6 & 0 & 0 & 1 & 2 & 6 & & \\
7 & 1 & 2 & 2 & & & & \\
8 & 0 & 4 & 6 & & & \\
n=33
\end{array}
$$

(a) Using the above information, find
(i) the median 1
(ii) the lower quartile and the upper quartile2
(iii) the semi-interquartile range. 2
(b) What is the probability that a customer chosen at random spent more than 80 pence?

5 (a) (i) median Q_{2}, occurs $\frac{33+1}{2}=17$ th term

$$
S_{0} Q_{2}=S 2
$$

(ii) Q_{1} (lower) $=\frac{38+4}{2}=39$

$$
\hat{q}_{3} \text { (upper) }=\frac{61^{2}+62}{2}=61.5
$$

(iii) Semi $I Q R=\frac{Q_{3}-Q_{1}}{2}=\frac{61.5-39}{2}=11.25$
(b) $\operatorname{pros}\left(>8 o_{p}\right)=\frac{2}{33}$.

6.

Part of the graph of $y=\cos b x^{\circ}$ is shown in the diagram. State the value of b.
6. $b=3 \quad$ (pariod $\left.120^{\circ}\right)$
7. The square and rectangle shown below have the same perimeter.

Show that the length of the rectangle is $(3 x+1)$ centimetres.
7. perimeter of square $=4(2 x+2)=8 x+8$.
perimeter of rectangle $=2(3+3)+2 L$.
Since equal then:

$$
\begin{aligned}
2(x+3)+2 L & =8 x+8 \\
2 x+6+2 L & =8 x+8 \\
2 L & =6 x+2 \\
L & =3 x+1
\end{aligned}
$$

as required
8. (a) Express $\frac{3}{x}-\frac{5}{x+2}, x \neq 0, x \neq-2$, as a single fraction in its simplest form.
(b) Express $\sqrt{18}-\sqrt{2}+\sqrt{72}$ as a surd in its simplest form.
8. (a)

$$
\text { 8. (a) } \begin{aligned}
& \frac{3}{x}-\frac{5}{x+2} \\
& \frac{3(x+2)}{x(x+2)}-\frac{5 x}{x(x+2)} \\
&= \frac{3(x+2)-5 x}{x(x+2)} \\
&= \frac{3 x+2-5 x}{x(x+2)} \\
&= \frac{2-2 x}{x(x+2)}
\end{aligned}
$$

$$
=\frac{3(x+2)-5 x}{x(x+2)}
$$

$$
\begin{aligned}
& \text { (b) } \sqrt{18}-\sqrt{2}+\sqrt{72} \\
& =\sqrt{9 \times \sqrt{2}}-\sqrt{2}+\sqrt{36} x \\
& =3 \sqrt{2}-\sqrt{2}+6 \sqrt{2} \\
& =2 \sqrt{2}+6 \sqrt{2} \\
& =8 \sqrt{2}
\end{aligned}
$$

1. The population of a city is increasing at a steady rate of $2 \cdot 4 \%$ per annum. The present population is 528000 .
What is the expected population in 4 years time?
Give your answer to the nearest thousand.
2.

$$
\begin{aligned}
528000 \times(1.024)^{4} & =580542 \\
& =581000 \quad \text { (nearest } 1000 \text {) }
\end{aligned}
$$

2. Two groups of six students are given the same test.
(a) The marks of Group A are

73	47	59	71	48	62.

Use an appropriate formula to calculate the mean and the standard deviation.
Show clearly all your working.
(b) In Group B, the mean is 60 and the standard deviation is $29 \cdot 8$. Compare the results of the two groups.

$$
\begin{array}{rlrl}
2(a) \bar{x} & =\frac{\sum x}{6}=\frac{360}{6}=60 & & \\
\begin{array}{rlrl}
\frac{(\Sigma x)^{2}}{n} & =\frac{360^{2}}{6}=21600 & s & =\sqrt{\frac{22208-21600}{6-1}} \\
\Sigma x^{2} & =73^{2}+47^{2}+59^{2}+71^{2}+48^{2}+62^{2} & & =\sqrt{\frac{608}{5}} \\
& =22208 & & =11.03
\end{array}
\end{array}
$$

(b) mean is the same
but the spread y marks form the mean is much greater because standard deviation marks 29.8711 .0 .
3. The contents of twenty matchboxes were counted.

44	44	46	45	47	48	47	41	48	45
45	44	42	43	44	46	46	43	49	45

(a) Construct a dot plot for the data.
(b) Describe the shape of the distribution.
(c) What would you expect the "average contents per matchbox" to be ?
3. (a)

(b) Symmetrical distubation.
(c) Average contents 45
4. Gordon and Brian leave a hostel at the same time.

Gordon walks on a bearing of 045° at a speed of 4.4 kilometres per hour. Brian walks on a bearing of 100° at a speed of 4.8 kilometres per hour.

If they both walk at steady speeds, how far apart will they be after 2 hours?
4. 2hrs:

$$
100-45=55^{\circ}
$$

$$
\begin{aligned}
h^{2} & =g^{2}+b^{2}-2 g b \cos H \\
& =8.8^{2}+9.6^{2}-(2 \times 8.8 \times 9.6 \times \cos 55) \\
h^{2} & =72.69 \\
h & =8.53 \mathrm{~km} \text { apart after 2hrs }
\end{aligned}
$$

5.

The equation of the parabola in the above diagram is

$$
y=(x-2)^{2}-9
$$

(a) State the coordinates of the minimum turning point of the parabola.
(b) Find the coordinates of C.
(c) A is the point $(-1,0)$. State the coordinates of B.
5. (a) $(2,-9)$
(b) C when $x=0$

$$
\begin{gathered}
y=(0-2)^{2}-9=4-9=-5 \\
\text { conds } C(0,-5)
\end{gathered}
$$

(c) By symmety.

$$
\begin{aligned}
& -120,1,245 \\
& B(5,0)
\end{aligned}
$$

6. A drinks container is in the shape of a cylinder with radius 20 centimetres and height 50 centimetres.
(a) Calculate the volume of the drinks container.
Give your answer in cubic centimetres, correct to two significant figures.

(b) Liquid from the full container can fill 800 cups, in the shape of cones, each of radius 3 centimetres.

What will be the height of liquid in each cup?
6. (a) Vol of cylinder $=\pi r^{2} h=314 \times 20^{2} \times 50=62800$

$$
=63000 \text { (25.t.) }
$$

(b) Vol of cone $=\frac{1}{3} \pi r^{2} h \quad \times 800$ for 800 cups

$$
\text { *3: } \quad \begin{aligned}
& 3 V=\pi r^{2} h \times 800 \\
& h=\frac{3 V}{\pi r^{2}}=\frac{3 \times 63000}{314 \times 3 \times 3 \times 800} \\
&=8.36 \\
& h \quad=8.4 \mathrm{~cm} \quad(25 . f)
\end{aligned}
$$

7. Multiply out the brackets and collect like terms.

$$
(x+4)\left(2 x^{2}+3 x-1\right)
$$

$$
\text { 7. } \begin{aligned}
& (x+4)\left(2 x^{2}+3 x-1\right) \\
= & 2 x^{3}+3 x^{2}-x+8 x^{2}+12 x-4 \\
= & 2 x^{3}+11 x^{2}+11 x-4
\end{aligned}
$$

8.

A regular pentagon ABCDE is drawn in a circle, centre O, with radius 10 centimetres.
Calculate the area of the regular pentagon.
8.

$$
\begin{aligned}
\text { Angleat centic } & =\frac{360}{5}=72^{\circ} . \\
\text { Area of } 1{ }^{\prime \prime} \Delta^{\prime} & =\frac{1}{2} \times 10 \times 10 \times 5 \sin ^{\circ} 72^{\circ} \\
& =47.6 \mathrm{~cm}^{2} \\
\text { Area of } 5 \Delta^{\prime} s^{\prime} & =47.6 \times 5 \\
& =237.8 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { 9. (a) } \begin{array}{ll}
a^{2}\left(2 a^{-\frac{1}{2}}+a\right) \\
2 a^{3 / 2}+a^{3} \\
& \left(\begin{array}{c}
2-\frac{1}{2} \\
=\frac{4}{2}-\frac{1}{2} \\
= \\
=
\end{array}\right)
\end{array}
$$

9. (b) Solve the quadratic equation

$$
3 x^{2}+3 x-7=0
$$

using an appropriate formula.
Give your answers correct to 1 decimal place. $3 x^{2}+3 x-7=0$

$$
a=3 \quad b=3 \quad c=-7
$$

$$
\begin{aligned}
& x=\frac{-3 \pm \sqrt{(3)^{2}-(4 \times 3 \times-7)}}{2 \times 3} \\
& =\frac{-3 \pm \sqrt{9-(-84)}}{6} \\
& =\frac{-3+\sqrt{93}}{6} \text { or } \frac{-3-\sqrt{93}}{6} \\
& =1.107 \quad \text { or }-2.107 \\
& =1.1 \quad \text { or }-2.1 \quad \text { to } 1 \mathrm{~d} . \mathrm{p}
\end{aligned}
$$

10. The diagram shows a mirror which has been designed for a new hotel.
The shape consists of a sector of a circle and a kite AOCB.

- The circle, centre O, has a radius of 50 centimetres.
- Angle $\mathrm{AOC}=140^{\circ}$.
- $\mathbf{A B}$ and CB are tangents to the circle at A and C respectively.
Find the perimeter of the mirror.

$$
\begin{aligned}
& \Delta_{p p}=x=\operatorname{Adj} \times \operatorname{Tan} 70^{\circ} \\
&=50 \times \operatorname{Tan} 70^{\circ} \\
& \text { So } \quad A B=137.37 \mathrm{~cm} \\
& \text { And } \quad B C=137.37 \\
& \text { Sector } A C \Rightarrow \frac{220}{360} \times \pi \times 100 \\
&=191.9 \mathrm{~cm} \\
& \text { Perimeter }=191.9+2 \times 137.37=466.8 . \mathrm{cm}
\end{aligned}
$$

11. (a) Solve the equation

$$
4 \tan x^{\circ}+5=0, \quad 0 \leq x \leq 360 .
$$

(b) Show that

$$
\tan x^{\circ} \cos x^{\circ}=\sin x^{\circ}
$$

$11 .(a)$

$$
\begin{aligned}
4 \tan x+5 & =0 \\
4 \tan x & =-5 \\
\tan x & =-\frac{5}{4}=-1.25
\end{aligned}
$$

Acute angle $A=\tan ^{-1}(1.25)=51.3^{\circ}$ Tans negative in quads 2 and 4.
quad $2 \Rightarrow(180-A)=180-51.3=128.7^{\circ}$
quad $4 \Rightarrow(360-A)=360-51.3=308.7^{\circ}$.

$$
x=128.7^{\circ} \text { or } 308.7^{\circ}
$$

A1. A group of students scored the following marks in a test.

9	5	6	8	6	9	7	8	6	5

(a) Construct a frequency table from the above data and add a cumulative frequency column.
(b) What is the probability that a student chosen at random from this group scored less than 8?

A1. (a) MARKS TAUY Fred CUMUCATIVE FREQ.

5	11	2	2
6	11	3	5
7	1	1	6
8	11	2	8
9	11	2	10

(b) $P(5,6,7)=\frac{6}{10}=\frac{3}{5}$

A2.

Find the equation of the straight line.

Az. $m=-2 \quad c=10 \quad y=-2 x+10$

A3. Factorise
$9 a^{2}-25 b^{2}$.
(Difference of two squares)

$$
\begin{array}{ll}
A 3 \quad & 9 a^{2}-25 b^{2} \\
& (3 a+5 b)(3 a-5 b)
\end{array}
$$

A4.

- A, B and C are points on the circumference of a circle, centre O.
- CD is a tangent to the circle.
- Angle BCD $=25^{\circ}$.

Calculate the size of angle BAC.
$A_{4} \angle C B A=90^{\circ} \quad$ (Triangle is semi circle is right angled)

$$
\begin{aligned}
& \angle O C D=90^{\circ} \quad(\text { Tangent }) \\
& \angle B C O=90-25^{\circ}=65^{\circ} \\
& \angle B A C=180-\left(9 D+65^{\circ}\right)=25^{\circ}
\end{aligned}
$$

A5. A manufacturer of matches claims that there are "on average 60 matches per box".

A sample of eleven boxes contains the following numbers of matches per box.
$58, \quad 62, \quad 60,65, \quad 59,60, \quad 59,62, \quad 61, \quad 61,64$
(a) From the above data, find the median, the lower quartile and the upper quartile.
(b) Comment on the claim made above. 1
(c) Construct a boxplot for the data.
(d) A different sample of matchboxes was taken. The boxplot, shown below, was drawn for the new data.

Does this new data support the manufacturer's claim?
Give a reason for your answer.
$\begin{array}{llllllllllll}A 5 & 58 & 59 & 59 & 60 & 60 & 61 & 61 & 62 & 62 & 64 & 65\end{array}$ $n=11$.
(a) $\quad Q_{1}=59$.
$Q_{2}=61 \quad Q_{3}=62$
(b) Would be about right maybe slightly more for the average maybe 61 .

B6. The diagram below shows the graph of $y=a x^{2}$.

Find the value of a.

$$
\text { B6. } \quad \begin{aligned}
y & =a x^{2} \quad(5,50) \\
50 & =a\left(5^{2}\right) \\
a & =\frac{50}{25}=2
\end{aligned}
$$

The graph of $y=\sin b x^{\circ}$ is shown in the diagram.
State the value of b.

$$
\text { B7. } \quad b=2 \quad\left(\text { pand }=\frac{360}{2}=180^{\circ}\right)
$$

B8. (a) Express $\frac{a^{\frac{1}{2}} \times a^{\frac{5}{2}}}{a^{2}}$ in its simplest form.
(b) Express $\frac{2}{\sqrt{3}}$ as a fraction with a rational denominator.
(c) Express $\frac{2}{x}+\frac{4}{x+3}, x \neq 0, x \neq-3$, as a single fraction in its simplest form.

B8 (a) $\frac{a^{\frac{1}{2}} \times a^{5 / 2}}{a^{2}}=\frac{a^{\frac{6}{2}}}{a^{2}}=\frac{a^{3}}{a^{2}}=a$
(b) $\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$

$$
\text { (c) } \begin{aligned}
& \frac{2}{x}+\frac{4}{x+3} \\
&= \frac{2(x+3)}{x(x+3)}+\frac{4 x}{x(x+3)} \\
&= \frac{2 x+6+4 x}{x(x+3)} \\
&= \frac{6 x+6}{x(x+3)} \\
&=
\end{aligned}
$$

Main Grid

A1. A hotel inspector recorded the volume of wine, in millilitres, in a sample of six glasses.

$$
\begin{array}{llllll}
120 & 126 & 125 & 131 & 130 & 124
\end{array}
$$

Use an appropriate formula to calculate the standard deviation. Show clearly all your working.

Al.

$$
\begin{aligned}
& \sum x=756 \quad(\Sigma x)^{2} / n=\frac{756^{2}}{6}=95256 \\
& \Sigma x^{2}=120^{2}+126^{2}+125^{2}+131^{2}+130^{2}+124^{2}=95338 \\
& S=\sqrt{\frac{95338-95256}{6-1}}=\sqrt{\frac{82}{5}}=\sqrt{2} 6.4=4.05
\end{aligned}
$$

A2. Multiply out the brackets and collect like terms.

$$
(3 x+2)(x-1)+4 x
$$

$$
\text { A2. } \begin{aligned}
& (3 x+2)(x-1)+4 x \\
= & 3 x^{2}+2 x-3 x-2+4 x \\
= & 3 x^{2}+3 x-2
\end{aligned}
$$

A3. The diagram shows a fold-away table whose top is in the shape of part of a circle.

- The centre of the circle is O.
- $A B$ is a chord of the circle.
- AB is 70 centimetres.
- The radius, OA, is 40 centimetres.

Find the width of the table.

$A 3$

Pythagoras:

$$
\begin{aligned}
a^{2} & =c^{2}-b^{2} \\
& =40^{2}-35^{2} \\
& =1600-1225 \\
a & =\sqrt{375} \\
& =19.36 \\
& =19.4 \mathrm{~cm}
\end{aligned}
$$

Main Grid

$$
\begin{aligned}
\text { Lid th of table } & =40+19.4 \\
& =59.4 \mathrm{~cm}
\end{aligned}
$$

A4. Michael wishes to borrow $£ 1000$ for 3 months. He can choose from Advantage Loans or Low Cost Loans.

Which company costs less?
Give a reason for your answer.

A4. Advantage:-
Smiths: $E 1000 \times(1.015)^{3}=E 1045.68$ interest to pay k 45.68 .
'Loo Cost'
Interest for lye $=\ell 1000 \times 0.185=E 185$ for 3 moths $=t 185 \div 4=C 46.25$
"Advantage Loans" costs less by e0.57

A5. The cost of hiring a car depends on the number of days the car is hired and the number of litres of petrol used.
(a) David hired a car for 3 days and used 50 litres of petrol. The total cost was $£ 88 \cdot 50$.
Let x pounds be the cost per day of hiring a car, and y pounds be the cost of one litre of petrol.
Write down an equation in x and y which satisfies the above condition.
(b) Anne hired the same model of car for 4 days and used 60 litres of petrol. The total cost was $£ 113 \cdot 00$.
Write down a second equation in x and y which satisfies this condition.
(c) Find the cost per day of hiring the car and the cost of one litre of petrol.

A5. (a) $3 x+50 y=88.50$.
(b) $4 x+60 y=113.00$

$$
\begin{array}{rlrl}
\text { Equ(1) } \times 4 & 12 x+200 y & =354 \tag{2}\\
\text { Equ() } \times 3 & 12 x+180 y & =339 \\
\text { Sub } & 20 y & =15 \\
y & =\frac{15}{20}=0.75
\end{array}
$$

put in to Equ (1)

$$
\begin{aligned}
3 x+50 \times 0.75 & =88.50 \\
3 x & =88.50-37.50 \\
3 x & =51 \\
x & =17
\end{aligned}
$$

Cavis t17 perday petol cost 75 p a litre

A6. A bread bin is in the shape of a prism as shown below.

The cross-section of the bread bin consists of a rectangle 20 centimetres by 10 centimetres and a quarter circle.
(a) Calculate the volume of the bread bin.

Give your answer in cubic centimetres, correct to 3 significant figures.
(b) The design is changed so that the volume remains the same. The cross-section is now a rectangle 20 centimetres by 10 centimetres and a right-angled triangle as shown in the diagram below.

A6 (a) Area of cross section $=20 \times 10+\frac{1}{4} \pi \times 20^{2}$

$$
\begin{aligned}
& =200+314 \\
& =514 \mathrm{~cm}^{2} \\
& =A h \\
& =514 \times 42 \\
& =21588 \\
& =21600 \mathrm{~cm}^{2} \text { (3 shf.) }
\end{aligned}
$$

(b) Area of cross section the same too, as $h=42 \mathrm{~cm}$ again.

So oran of rectangle $=200 \mathrm{~cm}^{2}$
means that area of $\Delta=$ ara of (i).

$$
\begin{aligned}
\frac{1}{2} \times b \times h & =314 \\
\frac{1}{2} \times x \times 20 & =314 \\
x \times 10 & =314 \\
x & =314 \div 10 \\
x & =31.4 \mathrm{~cm}
\end{aligned}
$$

The diagram shows part of a football pitch with players at A, B, C and D. $B C$ is perpendicular to $C D$.
$\mathrm{CD}=35$ metres, angle $\mathrm{CDB}=10^{\circ}$, angle $\mathrm{BDA}=10^{\circ}, \mathrm{AD}=34$ metres.
Find the distance from A to B .

$$
\begin{aligned}
C^{A} H \quad H y p & =\frac{A d j}{\operatorname{Css} 10^{\circ}} \\
& =\frac{35}{\operatorname{Cos} 10}=35.53 \mathrm{~m}
\end{aligned}
$$

Use cosine rule

$$
\begin{aligned}
d^{2} & =34^{2}+35.5^{2}-(2 \times 34 \times 35.5 \times \operatorname{Cos} 10) \\
d & =38.92 \\
& =6.24 \mathrm{~m} \\
A B & =6.2 \mathrm{~m}
\end{aligned}
$$

A8. Heart-shaped cards have been designed for St Valentine's Day.

The template used is shown opposite with the key points A, B and C indicated.

The top of the template was formed by drawing two semi-circles, each with diameter 8 centimetres.

The template was completed by drawing arc AC of a circle centre B , where angle $\mathrm{ABC}=60^{\circ}$.

A8. Perimeter $A B=\pi \times d=3.14 \times 8=25.12 \mathrm{~cm}$.

$$
\begin{aligned}
\operatorname{arc} B C & =\frac{1}{6} \times \pi \times 32 \\
& =16.7467
\end{aligned}
$$

By symmetry $\operatorname{arc} A C=\operatorname{arc} B C=16.7467$

$$
\begin{aligned}
\text { Total perimeter of shape } & =25.12+2 \times 16.7467 \\
& =58.61 \mathrm{~cm}
\end{aligned}
$$

B9. (a) Change the subject of the formula $r=\frac{s t}{q}$ to s.
$B 9$

$$
\text { (a) } \begin{aligned}
r & =\frac{s t}{q} \\
q r & =s t \\
s t & =q r \\
s & =\frac{q r}{t}
\end{aligned}
$$

B9 (b) Use an appropriate formula to solve the quadratic equation

$$
3 x^{2}-2 x-6=0 . \quad 3 x^{2}-2 x-6=0
$$

Give your answer correct to 1 decimal place. $a=3 b=-2 c=-6$

$$
\begin{aligned}
& x=\frac{-2 \pm \sqrt{(-2)^{2}-(4 \times 3 \times-6)}}{2 \times 3} \\
& =\frac{-2 \pm \sqrt{4-(-72)}}{6} \\
& =\frac{-2+\sqrt{76}}{6} \text { or } \frac{-2-\sqrt{76}}{6} \\
& =1.786 \quad \text { or }-1.119 \\
& =1.8 \quad \text { or }-1.1 \quad \text { to } 1 \mathrm{~d} . \mathrm{p} .
\end{aligned}
$$

B10.

The arch of a railway bridge is represented by a parabola. The equation of the parabola is

$$
y=20-(x-3)^{2}
$$

(a) State the coordinates of the maximum turning point of the parabola.
(b) State the equation of the axis of symmetry.
(c) Points A and B have the same y-coordinate.
A is the point $(0,11)$. State the coordinates of B.

$$
y=20-(x-3)^{2}
$$

(a)
$(3,20)$
(b) $x=3$
(c) $\quad x=0 \quad y=11$
axis of symmetry: half way between 0 and 6 coords $\mathrm{B}(6,11)$

B11. (a) Solve the equation

$$
4 \sin x^{\circ}-1=0, \quad 0 \leq x<360
$$

(b) Show that

$$
\frac{1-\cos ^{2} A}{\cos ^{2} A}=\tan ^{2} A
$$

BII. (a) $4 \sin x-1=0$

$$
\begin{aligned}
\sin x & =\frac{1}{4} \\
x & =\sin ^{-1}(0.25) \\
& =14.5^{\circ}
\end{aligned}
$$

Sinx posit ine in quad 2

$$
\begin{aligned}
& \text { Angle }=180-14.5=165.5^{\circ} \\
& x=14.5^{\circ} \text { or } 165.5^{\circ}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { LHS = } \frac{1-\operatorname{Cos}^{2} A}{\operatorname{Cos}^{2} A}=\frac{\operatorname{Sin}^{2} A}{\operatorname{Cos}^{2} A} & =\tan ^{2} A \\
& =\text { RHS }
\end{aligned}
$$

as required.

C6. Stephen plans to go to a concert. The ticket costs $£ 49 \cdot 00$. He works 2 hours overtime on Friday night at time and a half, and $2 \frac{1}{2}$ hours overtime on Saturday morning at double time.
If his basic pay is $£ 6.80$ per hour, will his overtime pay cover the cost of the ticket?
You must give a reason for your answer.
C.6. Time and a half: $\quad 6.80 \times 1.5 \times 2$ hrs $=E 20.40$ Douse time: $\quad 6.80 \times 2 \times 2.5$ hrs $=\frac{k 34.00}{\varepsilon 54.40}$

Total overtime \quad

He has enough E5.40 extra

C7. The distance, s metres, travelled by a moving object is given by the formula

$$
s=\frac{(u+v) t}{2}
$$

where u metres per second is the initial velocity,
v metres per second is the final velocity
and t seconds is the time taken.
(a) Calculate s when $u=3, v=7$ and $t=4$.
(b) Calculate t when $s=35, u=5$ and $v=9$.
$C 7$.
(a)

$$
\begin{aligned}
S & =\frac{(u+v) t}{2} \\
& =\frac{(3+7) 4}{2} \\
& =20 \mathrm{~m}
\end{aligned}
$$

(b)

$$
\begin{gathered}
35=\frac{(5+9) t}{2} \\
35 \times 2=14 t \\
14 t=70 \\
t=5
\end{gathered}
$$

C9. The flowchart below shows how to calculate the cost of joining a sports club.

Applications Grid

Solution

Use the flowchart to calculate the cost for an adult who wants to make the payment in one lump sum.

C10. Lorna Simpson sells double glazing. She has a basic salary of $£ 12500$ per year. In addition to her basic salary she earns 10% commission on all her sales. Last year she sold $£ 50000$ worth of double glazing products.
(a) Calculate her gross annual salary for last year.
(b) The table below shows the rates of tax applicable for last year.

Rates of Tax	Taxable Income $£$
Lower rate 20%	1 to 4300
Basic rate 23%	4301 to 27100
Higher rate 40%	over 27100

Lorna's total tax allowance is $£ 4195$.
Calculate her annual tax bill for last year.
c10. 10% of $t 50000=65000$
(a) Gross $=12500+5000=k 17500$.
(b) $17500-4195=13305 \quad$ (Taxable Income)

First $44300=20 \%$ of $4300=6860$
Leaves $13305-4300=69005$ to be Faxed at 23%
So 23% of $69005=0.23 \times 9005=2071.15$

$$
\begin{aligned}
\text { Total tax } & =t 860+t 2071.15 \\
& =\ell 2931.15
\end{aligned}
$$

C11. A survey was carried out to find the waiting time for telephone calls to be answered at a call centre. The results are shown below.

Time in seconds	Number of calls
$20-34$	9
$35-49$	10
$50-64$	14
$65-79$	19
$80-94$	22
$95-109$	35
$110-124$	21
$125-139$	20

Calculate the mean waiting time in seconds.
midst
ClII.

$$
\begin{aligned}
& 27 \times 9=243 \\
& 42 \times 10=420 \\
& 57 \times 14=798 \\
& 72 \times 19=1368 \\
& 87 \times 22=1914 \\
& 102 \times 35=3570 \\
& 117 \times 21=2457 \\
& 132 \times 20=2640
\end{aligned}
$$

Totals $150 \quad 13410$

$$
\text { mean }=\frac{13410}{150}=89.4 \text { seconds }
$$

3. The flowchart below shows how to find the cost of travel insurance for a 17 day holiday.

Use the flowchart to find the total insurance cost for a party of six planning a 17 day holiday to Europe.

Q3 Cost $=k 23 \times 6=k 138$
Deduct $15 \%(>5): 15 \%$ of $138=E 20.70$
Insurance cost $=t 138-t 20.70$

$$
=t 117.30
$$

6. The area of the earring, shown below, is given by the formula

$$
A=a c-\frac{3}{2} b^{2} .
$$

(a) Calculate A when $a=25, b=14$ and $c=40$.
(b) Calculate b when $A=550, a=20$ and $c=35$.

$$
\begin{aligned}
Q 6 \cdot(a) A=a c-\frac{3}{2} b^{2} & =(25 \times 40)-\frac{3}{2} \times 14^{2} \\
& =1000-\frac{3}{2} \times 196 \\
& =1000-294 \\
& =706
\end{aligned}
$$

(b)

$$
\begin{aligned}
550 & =20 \times 35-\frac{3}{2} b^{2} \\
\frac{3}{2} b^{2} & =700-550 \\
b^{2} & =150 \times \frac{2}{3}=100 \\
b & =100 \\
& =10
\end{aligned}
$$

5. Anne Ibbotson works for a computer software company. Her March salary slip, shown below, is partly completed.

(a) Anne is paid a basic monthly salary of $£ 2000$ plus commission of 12% of her total monthly sales.
Calculate her gross salary for March when her sales totalled $£ 3398$.
(b) 6\% of Anne's gross monthly salary is paid into her pension fund.

Calculate Anne's net salary for March.
$Q 5^{\prime}(a)$

$$
\text { a) } \begin{aligned}
\text { Comm } & =12 \% \text { of } \ell 3398=\{407.76 \\
\text { Gross } & =t 2407.76 \\
\text { pension } & =6 \% \text { of } 2407.76=\ell 144.47 \\
\text { Net salary } & =\text { gross }- \text { deductions } \\
\text { Deductions } & =\{158+\ell 421.21+\ell 144.47 \\
& =\{723.68 \\
& =t 2407.76-\ell 723.68 \\
\text { Net } & =\ell 1684.08
\end{aligned}
$$

9. The table below shows the monthly repayments to be made, with and without payment protection, when money is borrowed from the Cheaper Deals Loan Company.

	Amount	$£ 1000$	$£ 2000$	$£ 3000$	$£ 4000$
12 months	With Payment Protection	$£ 101 \cdot 40$	$£ 202 \cdot 78$	$£ 304 \cdot 42$	$£ 405 \cdot 57$
	Without Payment Protection	$£ 88 \cdot 17$	$£ 176 \cdot 33$	$£ 264 \cdot 50$	$£ 352 \cdot 67$
24 months	With Payment Protection	$£ 53 \cdot 48$	$£ 106 \cdot 95$	$£ 160 \cdot 43$	$£ 213 \cdot 90$
	Without Payment Protection	$£ 46 \cdot 50$	$£ 93 \cdot 00$	$£ 139 \cdot 50$	$£ 186 \cdot 00$
36 months	With Payment Protection	$£ 37 \cdot 51$	$£ 75 \cdot 01$	$£ 112 \cdot 51$	$£ 150 \cdot 02$
	Without Payment Protection	$£ 32 \cdot 61$	$£ 65 \cdot 22$	$£ 97 \cdot 84$	$£ 130 \cdot 44$

Sophina Iqbal wants to borrow $£ 3000$ to buy a conservatory and wants to make repayments over 24 months with payment protection.
(a) Calculate how much this loan will cost Sophina.
(b) How much would she save if she took out the same loan over 24 months without payment protection?

Q9 (a) 24 maths at $2160.43=24 \times 160.43$

$$
=\ell 3850.32
$$

$$
\text { Cost of Coon }=1850.32
$$

(b)

$$
\begin{aligned}
& \text { Without protection }=24 \times 6139.50 \\
&=t 3348 \\
& \text { Cost of loon }=t 348 \\
& \text { Saving of } \ell 850.32-t 348 \\
&=t 502.32
\end{aligned}
$$

11. Greenfingers Garden Centre keeps a record of the number of plants bought by each customer during one day. The results are shown below.

Number of plants	Frequency
$1-10$	25
$11-20$	46
$21-30$	55
$31-40$	49
$41-50$	36

Calculate the mean number of plants bought by each customer.

Q II. Midst x Freq

$$
\begin{aligned}
& 5.5 \times 25=137.5 \\
& 15.5 \times 46=1413 \\
& 25.5 \times 55=1702.5 \\
& 35.5 \times 49=1739.5 \\
& 45.5 \times 36=1638 \\
& \text { Total } \frac{11}{211}=\frac{5630.5}{}
\end{aligned}
$$

mean $=\frac{5630.5}{211}=26.7$ plants/customer.
2. Suzy has a part-time job in a supermarket. Her basic rate of pay is $£ 4 \cdot 60$ per hour with rates of time and a half for work on Sundays and double time on Bank Holidays.
If she works

- Friday 3 hours
- Saturday 7 hours
- Sunday 2 hours
- Bank Holiday Monday 6 hours
calculate her gross pay.

$$
\begin{aligned}
(7+3) \times £ 4.60 & =£ 46.00 \\
2 \times £ 4.60 \times 1.5 & =£ 13.80 \\
6 \times £ 4.60 \times 2 & =£ 55.20 \\
\text { Total } & =£ 115.00
\end{aligned}
$$

6. The surface area of the shape below is given by the formula

$$
S=b(3 l+h)
$$

Find h when $S=3340, b=20$ and $l=50$.

Qb.

$$
\begin{gathered}
S=b(3 l+h) \\
3340=20(3 \times 50+h) \\
3340=20 \times 150+20 h \\
3340-3000=20 h \\
20 h=340 \\
h=17
\end{gathered}
$$

8. A call centre records the duration, in seconds, of each of 80 phone calls.

The results are shown in the cumulative frequency curve below.

(a) 10 calls
(b) 2 mins $=120 \mathrm{~s}$

50 out of 80 calls less than 2 mins

So

$$
\frac{50}{80} \times 100=62.5 \%
$$

Achieved.
62.5% is less than 75% required.

Applications Grid

Solution
(a) How many calls lasted 80 seconds or less?

1
(b) The call centre wishes to ensure that at least 75% of calls last no longer than 2 minutes. From the information given, has this been achieved?
Give a reason for your answer.

Q8.(a) 10 calls
(b)

$$
\begin{aligned}
2 \mathrm{mus}=120 \mathrm{~s} \quad \frac{50 \text { calls }}{80} & =0.675 \\
& =62.5 \%
\end{aligned}
$$

No only 62.5% ave 6 ss than 2 min much less then 75% required
7. The flowchart below shows how to calculate the interest when a certain amount of money is invested for 1 year.

Applications Grid
Solution

Use the flowchart to calculate the interest earned on an amount of $£ 6000$ invested in a postal account for 1 year.
10. Ian Smith is an engineer. His basic salary is $£ 32525$ per year. In addition to his basic salary he receives a bonus of $£ 1300$ and earns commission on all orders he negotiates. Last year his commission was $0 \cdot 2 \%$ on orders to the value of 1.5 million pounds.
(a) Calculate his gross annual salary for last year.
(b) The table below shows the rates of tax applicable for last year.

RATES OF TAX ON:	
first $£ 1520$ of taxable income	10%
next $£ 26880$ of taxable income	22%
all remaining taxable income	40%

Ian's total tax allowance is $£ 4385$.
Calculate his annual tax bill for last year.

Q10. (a) Commirsen $=0.2 \div 100 \times 1500000=\neq 3000$
Bonus $=t 2300$

$$
\begin{aligned}
\text { Tot (gross) earnings } & =32525+3000+1300 \\
& =336825
\end{aligned}
$$

$$
\text { Toxalle Income }=\text { gross }- \text { allowances }
$$

Tox $=36825-4385=l 32440$.

$$
{ }^{*} \text { First } k 1520 \text { ot } 10 \%=E 152
$$

Leaves 32440-1510 for tax $=\$ 30920$
next $\& 26880$ at $22 \%=0.22 \times 26880=25913.60$
Leaves 30920-26880 $=t 4040$.
Remaining $f 4040$ at $40 \%=0.4 \times 4040$

$$
=k 1616
$$

$$
\begin{aligned}
\text { Total tax } & =k 152+\ell 5913.60+\ell 1616 \\
& =k 7681.60
\end{aligned}
$$

12. Data from a recent census is analysed to find the age of residents in Crown Street.
The results are shown below.

Age (to the nearest year)	Number of Residents
$0-9$	4
$10-19$	9
$20-29$	11
$30-39$	16
$40-49$	21
$50-59$	18
$60-69$	17
$70-79$	5

Calculate the mean age of the residents.

412

$$
\begin{aligned}
& \text { Midpt } \times \text { Freq } \\
& 4.5 \times 418.0 \\
& 14.5 \times 9=130.5 \\
& 24.5 \times 11=5652.0 \\
& 34.5 \times 16=1 \quad \text { mean }=\frac{4354.5}{101} \\
& 44.5 \times 21=1034.5 \\
& 54.5 \times 18=43.1 \text { yrs } \\
& 64.5 \times 17=1096.5 \\
& 74.5 \times 5=372.5 \\
& \text { Totals 101 }
\end{aligned}
$$

2003 Paper 1

1. Joseph works as a childminder.

He is paid at a rate of $£ 4 \cdot 10$ per hour for weekdays and at time and a half for weekends.
One week he works from 9 am till 1 pm every day except Sunday.
Calculate Joseph's gross pay for that week.

Basic hrs: $\quad 4 \mathrm{hrs} \times 5 \quad=20 \mathrm{hrs}$
Overtime: $\quad 4 \mathrm{hrs} \times 1.5 \times 1=6$ hrs
Gross pay $26 \times £ 4.10=£ 106.60$
6. The diagram below shows part of the London Underground railway network.

An inspector has to travel along every route shown.
Is it possible to do this without travelling any route more than once?
Explain your answer.
Yes, start at node with value 3.
Oxford or South Kensington
8. The surface area, S square centimetres, of a cuboid is given by the formula

$$
S=2 l b+2 b h+2 l h
$$

where l centimetres is the length of the cuboid
b centimetres is the breadth of the cuboid h centimetres is the height of the cuboid.
(a) Calculate S when $l=8 \cdot 5, b=4 \cdot 5$ and $h=5.5$.
(b) Calculate h when $S=2170, l=30$ and $b=20$.
$98 \cdot(a)$

$$
\begin{aligned}
S & =2 l b+2 b h+2 l h \\
& =2 \times 8.5 \times 4.5+2 \times 4.5 \times 5.5+2 \times 8.5 \times 5.5 \\
& =76.5+49.5+93.5 \\
& =219.5 .
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
2170 & =2 \times 30 \times 20+2 \times 20 \times h+2 \times 30 \times h \\
2170 & =1000+40 h+60 h \\
2170-1200 & =100 h \\
100 h & =970 \\
h & =9.7
\end{aligned}
$$

7. Ali is paid a basic annual salary plus commission on his sales as shown in the table below.

Sales	Rate of commission on Sales
Less than $£ 25000$	$1 \cdot 5 \%$
$£ 25000$ to $£ 50000$	$1 \cdot 75 \%$
More than $£ 50000$	$2 \cdot 0 \%$

His basic annual salary is $£ 8500$.
(a) If he achieves sales of $£ 24900$, what will his total annual salary be?
(b) What would Ali's sales need to be to achieve a total annual salary of $£ 9600$?
7. (a)

$$
\begin{aligned}
1.5 \% \text { of } \begin{aligned}
k 24900 & =1.5 \div 100 \times 24900 \\
& =\ell 373.50 \\
\text { Total salary } & =\ell 8500+\ell 373.50 \\
& =\ell 8873.50
\end{aligned} .
\end{aligned}
$$

(b)

$$
\text { Commission }=\ell 9600-\ell 8500=\ell 1100
$$

$$
z \% \text { of } 50000=21000
$$

So more Than \&50000
Try 2% of $55000=f 1100$.
So his sales would need to be 255000 .
9. Irum needs a mortgage of $£ 54500$ and wants to make payments of $£ 500$ per month.
She designs a spreadsheet to compare the costs of two mortgages.
Solid Homes Building Society calculates the interest each month (0.52% per month).
Evergreen Building Society calculates the interest each year ($6 \cdot 4 \%$ per annum).

Applications Grid

Solution

(a) Write down the formula to enter in cell B21 the amount owed in December after interest has been added.
(c) Write down the formula to enter in cell H 12 the amount of annual interest.
(d) Which mortgage is more expensive in the first year, and by how much?
$Q q(a)=1.0052 \times C 20$
(b) $52325.16-500=251825.16$ 'appears' in C21
$(c)=6.4 \div 100 \times H 10 . \quad(=E 3488)$
(a) Solid Homes due $\leqslant 51825.16$

Evergreen due $654500+6488-16000$ $=651988$

$$
D_{\text {Bf }}=57998-51825.16=k 162.84
$$

Evergreen move expensive by $₹ 162.84$.
11. A survey was carried out to find the average price of a washing machine.

The results are shown in the table below.

Price	Frequency	Cumulative frequency
$251-300$	8	
$301-350$	12	
$351-400$	18	
$401-450$	25	
$451-500$	19	
$501-550$	10	
$551-600$	6	
$601-650$	2	

(a) Copy and complete the table.
(b) Using this data, draw a cumulative frequency curve on squared paper.
(c) From the curve you have drawn, estimate the median price of the washing machines.

(c) E400-medinn price for washingmachis
4. The diagram below represents 4 towns and the routes connecting them, with distances given to the nearest kilometre.

A van driver leaves Foxhill and has to make deliveries to the three other towns. He cannot go through any town more than once and does not need to return to Foxhill.
(a) Draw a tree diagram to show all possible delivery routes.
(b) Which is the shortest route?

Show clearly all working.
to (as

$$
F \begin{array}{rc}
G-J-H & \text { mites } \\
-H-J & 41 \\
-H-H & 41 \\
-G-G & 40 \\
J-G & 40
\end{array}
$$

(6) $\mathrm{F}-\mathrm{J}-\mathrm{H}-\mathrm{G}$ somites
6. The sum of the terms of a sequence of numbers is given by the formula

$$
S=\frac{1}{2} n[2 a+(n-1) d] .
$$

(a) Calculate S when $n=20, a=5$ and $d=3$.
(b) Calculate d when $S=664, a=4$ and $n=16$.
6. (as)

$$
\begin{aligned}
S & =\frac{1}{2} n[2 a+(n-1) d] \\
& =\frac{1}{2} \times 20[2 \times 5+(20-1) 3] \\
& =10[10+57] \\
& =10 \times 67 \\
& =670
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 664=\frac{1}{2} \times 16[2 \times 4+d(15)] \\
& 664=8[8+15 d] \\
& 664=64+120 d \\
& \Rightarrow \quad 120 d=600 \\
& d=5
\end{aligned}
$$

3. A company pays its employees travelling expenses based upon

- miles travelled;
- distance between home and workplace;
- engine capacity of car;
as shown in the flowchart below.

Calculate the travelling expenses paid to an employee

- who travels 130 miles;
- whose distance between home and workplace is 10 miles;
- whose car has an engine capacity of 1200 cc .

8. The table below shows the monthly repayments to be made, with and without payment protection insurance, when money is borrowed from the Marko Loan Company.

With Payment Protection Insurance

LOAN AMOUNT	36 Months MONTHLY REPAYMENT	MONTHLY REPAYMENT	MONTHLY REPAYMENT	
	$9 \cdot 9 \%$ APR for ALL loans of $£ 5000-£ 14999$			
$£ 5000$	$£ 186 \cdot 41$	$£ 149 \cdot 26$	$£ 127 \cdot 31$	
$£ 7500$	$£ 279.62$	$£ 223 \cdot 90$	$£ 190 \cdot 97$	
$£ 10000$	$£ 372 \cdot 83$	$£ 298 \cdot 53$	$£ 254 \cdot 63$	
8.9% APR for ALL loans of $£ 15000-£ 20000$				
$£ 15000$	$£ 549 \cdot 88$	$£ 438 \cdot 13$	$£ 371 \cdot 86$	

Without Payment Protection Insurance

LOAN AMOUNT	36 Months REPAYMENT	48 Months REPAYMENT	MON Months REPAYMENT		
	$9 \cdot 9 \%$ APR for ALL loans of $£ 5000-£ 14999$				
	$£ 162 \cdot 64$	$£ 127 \cdot 54$	$£ 106 \cdot 61$		
$£ 7500$	$£ 243 \cdot 97$	$£ 191 \cdot 32$	$£ 159 \cdot 92$		
$£ 10000$	$£ 325 \cdot 29$	$£ 255 \cdot 09$	$£ 213 \cdot 22$		
8.9% APR for ALL loans of $£ 15000-£ 20000$					
$£ 15000$	$£ 480 \cdot 68$	$£ 375 \cdot 40$	$£ 312 \cdot 55$		

Fatima wants to borrow $£ 5000$ to buy a car and another $£ 10000$ to buy a new kitchen.
She wants to make repayments over 60 months without payment protection insurance for each loan.
(a) State the monthly repayments she will make for:
(i) the $£ 5000$ loan;
(ii) the $£ 10000$ loan.

Because the interest rate changes with the amount of loan, Fatima decides to check the cost of one loan of $£ 15000$ over 60 months without payment protection insurance.
(b) How much would Fatima save over 60 months on the cost of one loan of $£ 15000$ rather than two separate loans?
8. (a) (i) $\in 106.61$ (ii) $\in 213.22$
(b) For both loons total repayments

$$
\begin{aligned}
& =(106.61+2(3.22) \times 60 \\
& =E 19189.80
\end{aligned}
$$

For 1 loan $\{312.55 \times 60$

$$
=k 18753
$$

Sowing of $19189.80-18753$

$$
=E 436.80
$$

* * (OR $(108.61+213.22)-312.55=(27.28 \mathrm{pm}$

Saving for 60 maths $=7.28 \times 60$

$$
=t 436.80
$$

10. A nurse earns $£ 18650$ per year and has tax allowances totalling $£ 4670$.
(a) Calculate the nurse's taxable income.
(b) The rates of tax applicable are as follows.

TAXABLE INCOME (£)	RATE
On the first $£ 1920$	10%
On the next $£ 27980$	22%
On any income over $£ 29900$	40%

Calculate the amount of tax payable by the nurse.
10. (a) Tax Income $=18650$

$$
=\frac{4670}{13980}
$$

(b) 10% of $f(920=E 192$ (ta) remaining $13980-1920=12060$

$$
\text { Tax }=22 \% \text { of } t 12060
$$

$$
=k 2653.20
$$

$$
\begin{aligned}
\text { Total tax } & =k 192+k 2653.20 \\
& =k 2845.20
\end{aligned}
$$

12. A company keeps a record of how many days each employee is absent over a two-year period.
The results are shown in the frequency table below.

Number of days absent	Frequency
$0-4$	14
$5-9$	17
$10-14$	8
$15-19$	4
$20-24$	2

Calculate the mean number of days an employee is absent.
12. No.d days Mid pt x Frey

$0-4$	2	$\times 14=28$
$5-9$	7	$417=119$
$10-14$	12	$\times 8=96$
$15-19$	17	$+4=68$
$20-24$	22×2	$\times 2=\frac{24}{35}$

totals 45

$$
\begin{aligned}
\text { mean }=\frac{355}{45} & =7.8 \\
& =\underline{ }
\end{aligned}
$$

5. A manager uses a spreadsheet to calculate the gross wage of each worker.

	A	B	C	D	E
1					
2	First Name	Second Name	Basic hourly rate	Hours worked at basic rate	Gross wage
3	Joseph	Shaw	$£ 8.40$	36	$£ 302.40$
4	Mary	Murphy	$£ 8.00$	20	
5	Irum	Rahman	$£ 6.40$	30	
6	Stephen	Sheilds	$£ 6.00$	24	
7	Miriam	Philips	$£ 4.50$	16	
8					
9					
10		Average gross wage per worker $=$			

(a) The result of the formula $=$ C5*D5 is entered in cell E5.
What will appear in cell E5?
(a) $£ 6.40 \times 30=£ 192$
(b) Write down the formula to enter in cell E10 the average gross wage per worker.
(b) = AVERAGE(E3;E7)
7. A network is traversable if it can be drawn by going over every line once and only once without lifting your pencil.

The network shown opposite can be traversed by the route
$\mathrm{S} \rightarrow \mathrm{P} \rightarrow \mathrm{Q} \rightarrow \mathrm{S} \rightarrow \mathrm{R} \rightarrow \mathrm{Q} \rightarrow \mathrm{T}$

Is the network below traversable?

Applications Grid
Solution

Explain your answer.
7. Yes

$$
E \rightarrow F \rightarrow G \rightarrow A \rightarrow E \rightarrow D \rightarrow C \rightarrow A \rightarrow B
$$

(or start at 'C', start at an 'odd' node)
9. The surface area, S square centimetres, of a cylinder is given by the formula

$$
S=2 \pi r^{2}+2 \pi r h
$$

where $\quad r$ centimetres is the radius of the base and $\quad h$ centimetres is the height.

Take $\boldsymbol{\pi}=\mathbf{3 \cdot 1 4}$.
(a) Calculate S when $r=3$ and $h=7$.
(b) Calculate h when $S=471$ and $r=5$.
9. (a)

$$
\begin{aligned}
S & =2 \pi r^{2}+2 \pi r h \\
& =2 \times 314 \times 3^{2}+2 \times 3.14 \times 3 \times 7 \\
& =18 \times 314+42 \times 3.14 \\
& =314(18+42) \\
& =314 \times 60 \\
& =188.405 \mathrm{~cm}
\end{aligned}
$$

(b)

$$
\begin{aligned}
471 & =2 \times 3.14 \times 5^{2}+2 \times 314 \times 5 \times h \\
471 & =50 \times 314+3.14 \times 10 \times h \\
471-157 & =h \times 31.4 \\
314 & =h \times 31.4 \\
h & =10 \mathrm{~cm}
\end{aligned}
$$

3. Sandy works in a call centre for a company selling conservatories.

Her pay is calculated as follows:

- for each client who agrees to a home visit from a salesman she is paid $£ 10$
- for each one of her clients who places an order for a conservatory she is paid $0 \cdot 5 \%$ commission on the sale.

One week 20 of Sandy's clients agree to a home visit.
One of them orders a conservatory worth $£ 12000$.
Calculate Sandy's pay for the week.

$£ 10 \times 20$	$=£ 200$
0.5% of $£ 12000$	$=£ 60$
Pay for week	$=£ 260$

6. The table shown below is used to calculate loan repayments.

Monthly repayments on a loan of $£ \mathbf{1 0 0 0}$

APR	12 months	24 months	36 months	48 months
12%	$£ 88 \cdot 56$	$£ 46 \cdot 79$	$£ 32 \cdot 92$	$£ 26 \cdot 03$
14%	$£ 89 \cdot 40$	$£ 47 \cdot 62$	$£ 33 \cdot 78$	$£ 26 \cdot 91$
16%	$£ 90 \cdot 23$	$£ 48 \cdot 46$	$£ 34 \cdot 63$	$£ 27 \cdot 80$
18%	$£ 91 \cdot 05$	$£ 49 \cdot 28$	$£ 35 \cdot 49$	$£ 28 \cdot 68$
20%	$£ 91 \cdot 86$	$£ 50 \cdot 10$	$£ 36 \cdot 34$	$£ 29 \cdot 57$

Jack Smith borrows $£ 3500$ over 36 months at an annual percentage rate (APR) of 14%.
Use the table to calculate the total cost of the loan.
Total repayments $=£ 33.78 \times 36 \times 3.5=£ 4256.28$
Cost of loan
£4256.28-£3500=£756.28
10. Below is a copy of Louise Green's credit card statement.

(a) 3% of $£ 383.61=£ 11.51$
(b) Balance owed £383.61-£11.51
$=£ 372.10$
Interest $=1.5 \%$ of $£ 372.10$
$=£ 5.58$

Total owed

$$
\begin{aligned}
£ 372.10 & +£ 5.58 \\
& =£ 377.68
\end{aligned}
$$

Applications Grid
2
Solution
(a) Louise makes the minimum payment. How much does she pay?
(b) If Louise does not add any items to her credit card during the next month, calculate the "balance owed" on her next statement.
12. A sample of 40 light bulbs was chosen at random and tested to see how long each bulb lasted.
The results are shown below.

Life of bulb $(t$ hours $)$	Frequency
$1200 \leq t<1300$	3
$1300 \leq t<1400$	4
$1400 \leq t<1500$	3
$1500 \leq t<1600$	4
$1600 \leq t<1700$	5
$1700 \leq t<1800$	6
$1800 \leq t<1900$	9
$1900 \leq t<2000$	6

(a) Construct a cumulative frequency column for the above data.
(b) Using squared paper, draw a cumulative frequency diagram for this data.
(c) From your diagram, estimate the median number of hours a light bulb lasts.

Applications Grid
2. Andrew Bell works in a factory. He works a basic 8 hour day at a rate of $£ 6 \cdot 40$ per hour. Additional hours worked are paid at time and a half. Andrew's timesheet for one week's work is shown below.

2006 Paper 1

Andrew Bell	
	Hours worked
Monday	8
Tuesday	8
Wednesday	10
Thursday	10
Friday	8

Calculate Andrew's gross wage for this week.
2. Total hrs $=44$.

Basic pay $\begin{array}{r}\varepsilon_{6} .40 \\ \epsilon \frac{x .40}{256.00}\end{array}$
overtime $66.40+t 3 \cdot 20=k 9.60$ parhowr
overtime pay $E 9.60$

$$
\begin{array}{r}
2 \times 4 \\
t 38.40
\end{array}
$$

$$
\begin{aligned}
\text { Total gross pay }= & \ell 256.00 \\
& +\frac{2.8 .40}{}=294.40
\end{aligned}
$$

5. Anthony is going to cook chicken escalope in breadcrumbs with spaghetti in a tomato and basil sauce.
He has four rings on his cooker, allowing the different dishes to be cooked at the same time.
The network below shows how this can be done.
Times are given in minutes.

By considering the critical path from start to finish of this network, find the minimum time needed to complete the job.

Critical path (longest times) $=10+30+3=43$ mins
6. The formula below converts temperature from Celsius (C) to Fahrenheit (F).

$$
\mathrm{F}=32+\frac{9}{5} \mathrm{C}
$$

Use this formula to convert $25^{\circ} \mathrm{Celsius}$ to Fahrenheit.

$$
\begin{aligned}
\mathrm{F} & =32+9 / 5 \times 25 \\
& =32+45 \\
& =77^{\circ} \mathrm{F}
\end{aligned}
$$

10. A group of 1000 pupils sit a test marked out of 12 .

The cumulative frequency curve derived from their marks is shown below.

Use this information to draw a boxplot of the marks.

Solution

Applications Grid

4. Sajid has borrowed $£ 200$ with interest accumulating at 1.5% each month. The spreadsheet shows the amount owed at the beginning of each month.

	A	B
1	Month	
2	January	$£ 200.00$
3	February	$£ 203.00$
4	March	$£_{2} 206.05$
5	April	$£_{2} 212.14$
6	May	$£ 215.46$
7	June	$£_{2} 228.69$
8	July	$£ 225.97$
9	August	$£ 228.68$
10	September	$£ 235.59$
11	October	
12	November	
13	December	
14	January	
15		
16	APR	

$$
\begin{aligned}
& \text { (a) }= B 13 * \\
& \text { (b) } \begin{aligned}
\text { B14 } & =235.1015 \\
& =£ 239.12 \\
& \text { APR }= \\
& (£ 239.12-200) \div 200 * 100 \\
= & 19.56 \%
\end{aligned}
\end{aligned}
$$

(a) Write down the formula to enter in cell B14 the amount owed at the beginning of January.
(b) The Annual Percentage Rate (APR) for a monthly interest rate of 1.5% can be calculated using the formula $=(\mathrm{B} 14-\mathrm{B} 2) / \mathrm{B} 2 * 100$.
7. The flowchart below shows how to calculate the net interest when a certain sum of money is invested for 1 year.

Gross Interest

5.07% of $£ 58500=£ 2965.95$

Net Interest
$£ 2965.95 \times 0.8=£ 2372.76$

Applications Grid

Solution

Use the flowchart to calculate the net interest earned on an amount of $£ 58500$ invested by a tax payer for 1 year.
9. Jock McFadzean is a plumber. He earns $£ 38750$ in one year. He has tax allowances of $£ 4745$.
The rates of tax applicable for the year are given in the table below.

Taxable income ($(\mathbf{)}$)	Rate
On the first $£ 1960$	10%
On the next $£ 28540$	22%
On any income over $£ 30500$	40%

How much was Jock's weekly tax bill during the year?
9. At 10% Tox to pay $=\$ 196$

Tox able income $=38750-4745=1,34005$

$$
\begin{aligned}
& 34005-1960=\} 32045 \\
& 22 \% \text { of t28540 }=6278.80
\end{aligned}
$$

This leaves $32045-28340=k 3505$

$$
\begin{aligned}
& \text { This is taxed at } 40 \%: 40 \% \text { 3 } \begin{array}{r}
3505 \\
=
\end{array} \\
& \text { Total tax for year }=k 196+k 6278.80+k 1402 \\
& =27876.80 \\
& \text { Tax per week }=k 7876.80 \div 52 \\
& =2151.48 \text {. }
\end{aligned}
$$

11. The tables below show the monthly repayments to be made, with and without payment protection, when $£ 1000$ is borrowed from the Bettervalue Loan Firm.

Without Payment Protection				
APR on $£ 1000$	12 months	24 months	36 months	48 months
10%	$£ 88 \cdot 82$	$£ 47 \cdot 05$	$£ 33 \cdot 17$	$£ 26 \cdot 26$
12%	$£ 89 \cdot 66$	$£ 47 \cdot 89$	$£ 34 \cdot 02$	$£ 27 \cdot 13$
14%	$£ 9 \cdot 50$	$£ 48 \cdot 72$	$£ 34 \cdot 88$	$£ 28 \cdot 01$
16%	$£ 91 \cdot 33$	$£ 49 \cdot 56$	$£ 35 \cdot 73$	$£ 28 \cdot 90$

With Payment Protection					
APR on $£ 1000$	12 months	24 months	36 months	48 months	
10%	$£ 94.96$	$£ 51 \cdot 64$	$£ 37 \cdot 33$	$£ 30 \cdot 03$	
12%	$£ 95 \cdot 86$	$£ 52 \cdot 57$	$£ 38 \cdot 30$	$£ 31 \cdot 04$	
14%	$£ 96 \cdot 76$	$£ 53 \cdot 49$	$£ 39 \cdot 27$	$£ 32 \cdot 05$	
16%	$£ 97 \cdot 64$	$£ 54 \cdot 40$	$£ 40 \cdot 24$	$£ 33 \cdot 07$	

Jean needs a loan. She can afford to pay $£ 220$ per month, and wants the biggest loan she can get over 36 months, without payment protection.
How much can she borrow from Bettervalue Loan Firm at 14\% APR? Give your answer to the nearest $£ 100$.
11. Monthly payments of $\begin{aligned} & 34.88 x x=220 \\ & x=6.307\end{aligned}$

So she can borrow $\& 6.307$ which is $\ell 6300$ to nearest 100 .
8. The flowchart below shows how a publisher calculates the final cost of orders.

$$
\begin{aligned}
\text { Basic cost } & =80 \times £ 9.50 \\
& =£ 760 \\
\text { Discount } & =15 \% \text { of } £ 760 \\
& =£ 114
\end{aligned}
$$

Final cost $=£ 760-£ 114$
$=£ 646$

Solution

Applications Grid
10. A triangle has sides with lengths a, b, c.

The area, A, of this triangle can be calculated by using the formula

$$
A=\sqrt{s(s-a)(s-b)(s-c)} \quad \text { where } s=\frac{1}{2}(a+b+c)
$$

(a) Calculate the value of s when $a=3, b=6, c=7$.
(b) Using the values for s, a, b and c from part (a), calculate A. Give your answer for A correct to the nearest whole number.
(a) $S=1 / 2(3+6+7)=1 / 2(16)=8$
(b) $A=\sqrt{ } 8(8-3)(8-6)(8-7)$

$$
=\sqrt{ } 8 \times 5 \times 2 \times 1
$$

$$
=\sqrt{ } 80
$$

Solution

Applications Grid
approx $=9($ since $9 x 9=81)$
8. A job as a sales consultant is advertised.

Matthew telephones for information and finds out that the basic wage is $£ 15000$. In addition to this he will receive $2 \cdot 5 \%$ commission on all his sales.

What value of sales will Matthew have to make in order to earn $£ 22000$ per year?

Needs to make $£ 7000$.
2.5% of sales = £7000
0.025 x sales $=£ 7000$

Solution
sales $=£ 7000 \div 0.025=£ 280000$
10. A network diagram is shown below.

State the order of node C.

Node C has order 4. (4 routes/lines)

Solution

Applications Grid
11. The table below shows the monthly repayments to be made, with and without payment protection, when money is borrowed from the Good Deal Loan Company.

	60 m	onths	48 r	onths	36 m	nths	24	nths
amount	W	WO	W	WO	W	WO	W	WO
£15000	342.63	288.49	409.43	350.79	510.76	$454 \cdot 86$	736.73	$663 \cdot 35$
£.12500	285.53	240.41	341.20	292:33	425.63	379-05	613.94	552.79
£10000	228.42	192.33	272.95	$233 \cdot 86$	$340 \cdot 50$	$303 \cdot 24$	49115	$442 \cdot 23$
$£ 7500$	171.31	$144 \cdot 24$	204.72	$175 \cdot 40$	$255 \cdot 38$	$227 \cdot 43$	368.37	331-68
$£ 5000$	114.21	$96 \cdot 16$	136.48	116.93	170.25	$151 \cdot 62$	24558	$221 \cdot 12$
$\mathbf{W}=$ with payment protection				WO = without payment protection				

(a) Joseph decides to borrow $£ 12500$.

If he repays it over 48 months, without payment protection, calculate the cost of the loan.
(b) Brian thinks it would be cheaper to take a loan of $£ 12500$ over 36 months with payment protection.
Is he correct?
Explain your answer.

(a) Amount paid

$£ 292.33 \times 48=£ 14031.84$
Cost of loan
£14 031.84-£12 500
= £1531.84
(b) Other loan
$£ 425.63 \times 36=£ 15322.68$
3 No, he will pay more.
Extra to pay
£15 322.68-£14 031.84
= £1 290.84
Solution

Applications Grid

28 students timed their journeys from home to college.
The results, in minutes, are listed below.

14	34	22	13	17	15	36
17	8	14	24	2	25	17
31	17	20	23	10	28	19
21	22	28	30	21	16	19

(a) Construct a frequency table for the above data using class intervals

$$
1-5, \quad 6-10, \quad 11-15, \quad \text { etc. }
$$

(b) Using the frequency table in part (a), calculate the mean number of minutes per journey.

Time (mins)	Freq	Midpt \times freq	
$1-5$	1	3×1	3
$6-10$	2	8×2	16
$11-15$	4	13×4	52
$16-20$	8	18×8	144
$21-25$	7	23×7	161
$26-30$	3	28×3	84
$31-35$	2	33×2	99
$36-40$	1	38×1	38
Totals	28		564

$$
\text { Mean }=564 \div 28=20.1
$$

