

St Andrew's Academy

Mathematics Department

S1 BLOCK 1

FRACTIONS

	1													
1/2					1/2									
	1/4				1/4		1/4 1/4							
¹ / ₆		1	/ 6		•	¹ / ₆	1/6	õ		¹ / ₆		¹ / ₆		
1/8		¹ / ₈	1	/8		¹ / ₈	1/8		1/8	3	1	/8		1/8
¹ / ₁₀	¹ /	10 1	/10	1/	, 10	1/10	¹ / ₁₀	1/	10	1/	, 10	1/:	10	¹ / ₁₀

Shading Fractions

Shade in the fraction of the shape shown.

Fractions of Shapes

Video 143 on www.corbettmaths.com

Workout

Question 1: Shade in each shape by the fraction given.

(a)

Shade in $\frac{1}{3}$

(b)

Shade in $\frac{1}{2}$

(c)

Shade in $\frac{2}{3}$

(d)

Shade in $\frac{5}{9}$

(e)

Shade in $\frac{2}{7}$

(f)

Shade in $\frac{4}{5}$

Question 2: Shade in each shape by the fraction given.

(a)

Shade in $\frac{2}{3}$

(b)

Shade in $\frac{1}{5}$

(c)

Shade in $\frac{3}{4}$

(d)

Shade in $\frac{1}{4}$

(e)

Shade in $\frac{2}{3}$

(f)

Shade in $\frac{3}{5}$

Fractions of Shapes

Video 143 on www.corbettmaths.com

Question 3: Write down the fraction of each shape that is shaded.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Apply

Question 1: Which shape is the odd one out? Explain your answer.

Shape A

Shape C

Question 2: Jamie is trying to shade $\frac{1}{3}$ of the grid.

Each square he decides to shade, he must shade in fully.

Can he successfully shade in $\frac{1}{3}$ of the grid?

Explain your answer.

Fractions 3

Shade in the given fraction of the following shapes.

Fractions 4

Complete the table using the diagrams below.

1.		

		<u>d</u>		d	
Example	10	<u>3</u> 10	<u>5</u> 10	<u>8</u> 10	<u>2</u> 10
1					
2					
3					
4					
5					
6					
7					

8

9

10

Fractions on Number Lines

1. Show the position of the following fractions on the number line.

$$A = \frac{3}{10}$$

$$B = \frac{1}{10}$$

$$C = \frac{2}{5}$$

$$D = \frac{9}{10}$$

2. Show the position of the following fractions on the number line.

$$A = \frac{7}{9}$$

$$B = \frac{4}{9}$$

$$C = \frac{2}{9}$$

$$D = \frac{1}{9}$$

3. Show the position of the following fractions on the number line.

$$A = \frac{1}{12}$$

$$B = \frac{5}{12}$$

$$C = \frac{2}{3}$$

$$D = \frac{5}{6}$$

4. Show the position of the following fractions on the number line.

$$A = \frac{1}{5}$$

$$B = \frac{3}{5}$$

$$C = \frac{3}{10}$$

$$D = \frac{2}{5}$$

5. Show the position of the following fractions on the number line.

$$A = \frac{5}{9}$$

$$B = \frac{8}{9}$$

$$C = \frac{1}{9}$$

$$D = \frac{4}{9}$$

6. Show the position of the following fractions on the number line.

$$A = \frac{2}{7}$$

$$B = \frac{4}{7}$$

$$C = \frac{1}{7}$$

$$D = \frac{3}{7}$$

7. Show the position of the following fractions on the number line.

$$A = \frac{4}{5}$$

$$B = \frac{3}{5}$$

$$C = \frac{1}{5}$$

$$D = \frac{2}{5}$$

8. Show the position of the following fractions on the number line.

$$A = \frac{5}{6}$$

$$B = \frac{1}{3}$$

$$C = \frac{1}{6}$$

$$D = \frac{2}{3}$$

9. Show the position of the following fractions on the number line.

$$A = \frac{1}{10}$$

$$B = \frac{7}{10}$$

$$C = \frac{3}{10}$$

$$D = \frac{9}{10}$$

10. Show the position of the following fractions on the number line.

$$A = \frac{7}{8}$$

$$B = \frac{1}{8}$$

$$C = \frac{5}{8}$$

$$D = \frac{3}{8}$$

11. Show the position of the following fractions on the number line.

$$A = \frac{2}{5}$$

$$B = \frac{3}{10}$$

$$C = \frac{3}{5}$$

$$D = \frac{1}{2}$$

12. Show the position of the following fractions on the number line.

$$A = \frac{1}{4}$$

$$B = \frac{5}{6}$$

$$C = \frac{2}{3}$$

$$D = \frac{1}{3}$$

Ordering Fractions

Video 144 on www.corbettmaths.com

Workout

Question 1: Arrange the following sets of fractions in order, from smallest to largest

(a)
$$\frac{6}{7}$$
, $\frac{1}{7}$, $\frac{2}{7}$, $\frac{5}{7}$

(b)
$$\frac{3}{10}$$
, $\frac{9}{10}$, $\frac{1}{10}$, $\frac{7}{10}$ (c) $\frac{2}{9}$, $\frac{8}{9}$, $\frac{5}{9}$, $\frac{1}{9}$

(c)
$$\frac{2}{9}$$
, $\frac{8}{9}$, $\frac{5}{9}$, $\frac{1}{9}$

Question 2: Arrange the following sets of fractions in order, from smallest to largest

(a)
$$\frac{1}{5}$$
, $\frac{3}{10}$, $\frac{2}{5}$, $\frac{1}{10}$ (b) $\frac{1}{8}$, $\frac{1}{4}$, $\frac{5}{8}$, $\frac{3}{4}$ (c) $\frac{5}{9}$, $\frac{2}{3}$, $\frac{7}{9}$, $\frac{1}{3}$

(b)
$$\frac{1}{8}$$
, $\frac{1}{4}$, $\frac{5}{8}$, $\frac{3}{4}$

(c)
$$\frac{5}{9}$$
, $\frac{2}{3}$, $\frac{7}{9}$, $\frac{1}{3}$

(d)
$$\frac{3}{5}$$
, $\frac{13}{20}$, $\frac{2}{5}$, $\frac{9}{20}$

(d)
$$\frac{3}{5}$$
, $\frac{13}{20}$, $\frac{2}{5}$, $\frac{9}{20}$ (e) $\frac{5}{6}$, $\frac{7}{12}$, $\frac{5}{12}$, $\frac{11}{12}$ (f) $\frac{7}{20}$, $\frac{23}{60}$, $\frac{9}{20}$, $\frac{29}{60}$

(f)
$$\frac{7}{20}$$
, $\frac{23}{60}$, $\frac{9}{20}$, $\frac{29}{60}$

Question 3: Arrange the following sets of fractions in order, from smallest to largest

(a)
$$\frac{2}{3}$$
, $\frac{11}{15}$, $\frac{7}{15}$, $\frac{3}{5}$

(a)
$$\frac{2}{3}$$
, $\frac{11}{15}$, $\frac{7}{15}$, $\frac{3}{5}$ (b) $\frac{13}{20}$, $\frac{3}{4}$, $\frac{7}{10}$, $\frac{11}{20}$ (c) $\frac{1}{2}$, $\frac{2}{3}$, $\frac{7}{12}$, $\frac{5}{6}$

(c)
$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{7}{12}$, $\frac{5}{6}$

(d)
$$\frac{13}{16}$$
, $\frac{3}{4}$, $\frac{5}{8}$, $\frac{11}{16}$

(d)
$$\frac{13}{16}$$
, $\frac{3}{4}$, $\frac{5}{8}$, $\frac{11}{16}$ (e) $\frac{3}{50}$, $\frac{7}{100}$, $\frac{1}{10}$, $\frac{9}{200}$ (f) $\frac{13}{20}$, $\frac{4}{5}$, $\frac{7}{10}$, $\frac{23}{40}$

(f)
$$\frac{13}{20}$$
, $\frac{4}{5}$, $\frac{7}{10}$, $\frac{23}{40}$

Question 4: Arrange the following sets of fractions in order, from smallest to largest

(a)
$$\frac{3}{4}$$
, $\frac{2}{3}$, $\frac{5}{6}$, $\frac{1}{3}$

(b)
$$\frac{1}{4}$$
, $\frac{3}{8}$, $\frac{1}{6}$, $\frac{5}{12}$

(a)
$$\frac{3}{4}$$
, $\frac{2}{3}$, $\frac{5}{6}$, $\frac{1}{3}$ (b) $\frac{1}{4}$, $\frac{3}{8}$, $\frac{1}{6}$, $\frac{5}{12}$ (c) $\frac{9}{20}$, $\frac{5}{12}$, $\frac{3}{10}$, $\frac{17}{30}$

(d)
$$\frac{3}{25}$$
, $\frac{1}{10}$, $\frac{1}{8}$, $\frac{7}{50}$ (e) $\frac{27}{40}$, $\frac{3}{5}$, $\frac{5}{8}$, $\frac{6}{15}$ (f) $\frac{7}{20}$, $\frac{1}{3}$, $\frac{3}{8}$, $\frac{2}{5}$

(e)
$$\frac{27}{40}$$
, $\frac{3}{5}$, $\frac{5}{8}$, $\frac{6}{15}$

(f)
$$\frac{7}{20}$$
, $\frac{1}{3}$, $\frac{3}{8}$, $\frac{2}{5}$

Apply

Question 1: Write down a fraction between $\frac{2}{3}$ and $\frac{4}{5}$

Question 2: Write down a fraction between $\frac{5}{8}$ and $\frac{2}{3}$

Fraction of an Amount

Video 137 on www.corbettmaths.com

Workout

Question 1: Work out each of the following

(a)
$$\frac{1}{2}$$
 of 10

(b)
$$\frac{1}{3}$$
 of 18

(a)
$$\frac{1}{2}$$
 of 10 (b) $\frac{1}{3}$ of 18 (c) $\frac{1}{5}$ of 20 (d) $\frac{1}{4}$ of 24

(d)
$$\frac{1}{4}$$
 of 24

(e)
$$\frac{1}{9}$$
 of 27

(e)
$$\frac{1}{9}$$
 of 27 (f) $\frac{1}{10}$ of 160 (g) $\frac{1}{8}$ of 80 (h) $\frac{1}{7}$ of 49

(g)
$$\frac{1}{8}$$
 of 80

(h)
$$\frac{1}{7}$$
 of 49

(i)
$$\frac{1}{2}$$
 of 9

(j)
$$\frac{1}{5}$$
 of 65

(k)
$$\frac{1}{12}$$
 of 72

(i)
$$\frac{1}{2}$$
 of 9 (j) $\frac{1}{5}$ of 65 (k) $\frac{1}{12}$ of 72 (l) $\frac{1}{11}$ of 132

Question 2: Work out each of the following

(a)
$$\frac{2}{3}$$
 of 15

(a)
$$\frac{2}{3}$$
 of 15 (b) $\frac{7}{10}$ of 20 (c) $\frac{2}{5}$ of 30 (d) $\frac{3}{4}$ of 32

(c)
$$\frac{2}{5}$$
 of 30

(d)
$$\frac{3}{4}$$
 of 32

(e)
$$\frac{3}{5}$$
 of 45

(f)
$$\frac{2}{7}$$
 of 28

(g)
$$\frac{3}{8}$$
 of 88

(e)
$$\frac{3}{5}$$
 of 45 (f) $\frac{2}{7}$ of 28 (g) $\frac{3}{8}$ of 88 (h) $\frac{3}{10}$ of 120

(i)
$$\frac{5}{9}$$
 of 63

(j)
$$\frac{13}{20}$$
 of 60

(k)
$$\frac{2}{7}$$
 of 91

(i)
$$\frac{5}{9}$$
 of 63 (j) $\frac{13}{20}$ of 60 (k) $\frac{2}{7}$ of 91 (l) $\frac{4}{15}$ of 120

Question 3: Work out each of the following. Include suitable units.

(a)
$$\frac{1}{2}$$
 of £21

(b)
$$\frac{3}{4}$$
 of 100 kg

(c)
$$\frac{2}{3}$$
 of 27cm

(a)
$$\frac{1}{3}$$
 of £21 (b) $\frac{3}{4}$ of 100kg (c) $\frac{2}{3}$ of 27cm (d) $\frac{7}{8}$ of 32 seconds

(e)
$$\frac{2}{5}$$
 of 90 miles

(f)
$$\frac{5}{6}$$
 of £150

(g)
$$\frac{5}{12}$$
 of 240ml

(e)
$$\frac{2}{5}$$
 of 90 miles (f) $\frac{5}{6}$ of £150 (g) $\frac{5}{12}$ of 240ml (h) $\frac{9}{10}$ of 310 students

(i)
$$\frac{1}{8}$$
 of a day

(j)
$$\frac{4}{5}$$
 of 1km

(i)
$$\frac{1}{8}$$
 of a day (j) $\frac{4}{5}$ of 1km (k) $\frac{3}{7}$ of 2 weeks (l) $\frac{1}{500}$ of 1m

(l)
$$\frac{1}{500}$$
 of 1m

Question 4: Work out each of the following

(a)
$$\frac{3}{10}$$
 of 32 miles (b) $\frac{2}{5}$ of 9kg (c) $\frac{1}{3}$ of 8 litres (d) $\frac{3}{5}$ of £7

(c)
$$\frac{1}{3}$$
 of 8 litres

(d)
$$\frac{3}{5}$$
 of £7

(e)
$$\frac{1}{8}$$
 of 50cm

(e)
$$\frac{1}{8}$$
 of 50cm (f) $\frac{1}{5}$ of 4931km (g) $\frac{3}{4}$ of £57 (h) $\frac{2}{9}$ of 211km

(g)
$$\frac{3}{4}$$
 of £57

(h)
$$\frac{2}{9}$$
 of 211km

Fraction of an Amount

Video 137 on www.corbettmaths.com

Question 5: Work out the largest of each of the following pairs.

(a)
$$\frac{1}{3}$$
 of 21 or $\frac{1}{2}$ of 12 (b) $\frac{1}{6}$ of 30 or $\frac{2}{3}$ of 9 (c) $\frac{2}{5}$ of 65 or $\frac{3}{4}$ of 32

(b)
$$\frac{1}{6}$$
 of 30 or $\frac{2}{3}$ of 9

(c)
$$\frac{2}{5}$$
 of 65 *or* $\frac{3}{4}$ of 32

(d)
$$\frac{1}{5}$$
 of 2m or $\frac{3}{4}$ of 60cm (e) $\frac{3}{8}$ of a day or $\frac{1}{10}$ of 85 hours

(f)
$$\frac{7}{15}$$
 of 480 or $\frac{2}{3}$ of 453 (f) $\frac{3}{10}$ of 395 or $\frac{2}{7}$ of 420

Apply

Question 1: James has 20 sweets.

$$\frac{3}{4}$$
 of the sweets are red.

How many sweets are red?

Question 2: In a class, there are 24 students.

$$\frac{1}{8}$$
 of the students wear glasses.

How many students wear glasses?

Question 3: There are 40 apples in a crate.

 $\frac{3}{5}$ of the apples are bad.

How many good apples are there?

On Wednesday, James slept for $\frac{3}{8}$ of the day Question 4:

- (a) How many hours did James spend sleeping?
- (b) For how many hours was James awake?
- (c) What fraction of the day was James awake?

Fractions: Increasing/Decreasing by

Video 141 on www.corbettmaths.com

Workout

Question 1:

(a) Increase 40 by
$$\frac{1}{2}$$

(b) Increase 18 by
$$\frac{1}{3}$$

(c) Decrease 20 by
$$\frac{1}{4}$$

(d) Increase 30 by
$$\frac{1}{5}$$

(e) Decrease 24 by
$$\frac{1}{8}$$

(f) Decrease 70 by
$$\frac{1}{10}$$

(g) Increase 120 by
$$\frac{1}{3}$$

(h) Decrease 80 by
$$\frac{1}{5}$$

(i) Increase 72 by
$$\frac{1}{9}$$

Question 2:

(a) Increase 12 by
$$\frac{2}{3}$$

(b) Decrease
$$40 \text{ by } \frac{3}{10}$$

(c) Increase 30 by
$$\frac{2}{5}$$

(d) Decrease 16 by
$$\frac{3}{4}$$

(e) Increase 90 by
$$\frac{7}{10}$$

(f) Decrease 14 by
$$\frac{3}{7}$$

(g) Increase 48 by
$$\frac{5}{8}$$

(h) Decrease 54 by
$$\frac{2}{9}$$

(i) Increase 84 by
$$\frac{3}{4}$$

(i) Increase 275 by
$$\frac{2}{5}$$

(k) Decrease 240 by
$$\frac{3}{8}$$

(l) Increase 324 by
$$\frac{7}{9}$$

Question 3:

(a) Increase 60cm by
$$\frac{3}{10}$$

(b) Decrease 120kg by
$$\frac{1}{4}$$

(c) Increase 400ml by
$$\frac{2}{5}$$

(d) Increase 14g by
$$\frac{1}{5}$$

(e) Decrease 50 litres by
$$\frac{1}{8}$$

(f) Increase 130ml by
$$\frac{3}{4}$$

(g) Increase £76 by
$$\frac{2}{5}$$

(h) Increase 92cm by
$$\frac{3}{20}$$

(i) Increase 1.4kg by
$$\frac{7}{8}$$

Apply

Question 1: Annie is paid £300 per week.

She is going to get a pay rise and her pay will increase by a $\frac{1}{5}$

What will her weekly pay be after the pay rise?

Fractions: Increasing/Decreasing by

Video 141 on www.corbettmaths.com

- Question 2: Last season, the number of points a rugby team scored was 420. This season, the number of points they scored increased by $\frac{2}{3}$ How many points did the team score this season?
- Question 3: A jam jar usually contains 420g of jam. A special edition jar contains $\frac{3}{10}$ more jam. How much extra jam is in the special edition jar?
- Question 4: Find the missing values
 - (a) 60 reduced by a $\frac{1}{3}$ is the same as 50 reduced by a ?
 - (b) 72 increased by a $\frac{3}{4}$ is the same as ? reduced by a $\frac{1}{10}$
- Question 5: In 1990, the number of birds that live on an island was 1,200. By 2010, the number of birds that live on the island increased by $\frac{9}{4}$ How many birds live on the island in 2010?
- Question 6: Tia is training for a marathon using a special training programme. Each month she runs $\frac{2}{5}$ more miles than she did in the previous month. In January, Tia ran 15 miles.
 - (a) How many miles did Tia run in February?
 - (b) How many miles did Tia run in March?David says that Tia will not follow the special training programme forever.
 - (c) Explain why David is right.

Fractions: Finding the Original

Video 138 on www.corbettmaths.com

Workout

Question 1: Find the original number for each question below.

- (a) $\frac{1}{2}$ of a number is 7, what is the number? (b) $\frac{1}{3}$ of a number is 4, what is the number?
- (c) $\frac{1}{4}$ of a number is 8, what is the number? (d) $\frac{1}{5}$ of a number is 9, what is the number?
- (e) $\frac{1}{2}$ of a number is 12.5, what is the number? (f) $\frac{1}{3}$ of a number is 27, what is the number?
- (g) $\frac{1}{10}$ of a number is 2.6, what is the number? (h) $\frac{1}{12}$ of a number is 8, what is the number?

Question 2: Find the original number for each question below.

- (a) $\frac{2}{3}$ of a number is 12, what is the number? (b) $\frac{2}{5}$ of a number is 10, what is the number?
- (c) $\frac{2}{7}$ of a number is 6, what is the number? (d) $\frac{3}{10}$ of a number is 60, what is the number?
- (e) $\frac{4}{9}$ of a number is 12, what is the number? (f) $\frac{2}{3}$ of a number is 3, what is the number?
- (g) $\frac{3}{4}$ of a number is 27, what is the number? (h) $\frac{5}{12}$ of a number is 35, what is the number?

Question 3: Find the original number for each question below.

- (a) A number is increased by $\frac{1}{3}$ to 16. What was the number?
- (b) A number is increased by $\frac{1}{5}$ to 36. What was the number?
- (c) A number is decreased by $\frac{1}{4}$ to 21. What was the number?
- (d) A number is decreased by $\frac{1}{10}$ to 162. What was the number?
- (e) A number is increased by $\frac{2}{5}$ to 49. What was the number?
- (f) A number is increased by $\frac{3}{8}$ to 22. What was the number?

Fractions: Finding the Original

Video 138 on www.corbettmaths.com

- (g) A number is decreased by $\frac{4}{5}$ to 12. What was the number?
- (h) A number is decreased by $\frac{13}{20}$ to 1400. What was the number?

Apply

Question 1: Rebecca is $\frac{1}{6}$ of Barry's age.

Barry is $\frac{1}{3}$ of Neville's age.

If Rebecca is 4 years old, how old is Neville?

Question 2: A new snack bar contains 7.5g of sugar.

 $\frac{3}{10}$ of the snack bar is sugar.

Work out the mass of the snack bar.

Question 3: In a class, $\frac{2}{7}$ of the students have blonde hair.

There are 20 students without blonde hair.

How many students are in the class?

Question 4: The height of a tree increased by $\frac{4}{15}$ during 2016.

The tree is 2.47m by the end of 2016.

Work out the height of the tree at the beginning of 2016.

Question 5: Laura invested some money.

In the first year, the amount of money increased by $\frac{1}{20}$

In the second year, the amount of money increased by $\frac{1}{5}$

In the third year, the amount of money decreased by $\frac{1}{4}$

Was the investment a success?

Equivalent Fractions

Video 135 on www.corbettmaths.com

Workout

Question 1: Find the missing numbers

(a)
$$\frac{2}{3} = \frac{1}{6}$$

(b)
$$\frac{1}{5} = \frac{1}{20}$$

(c)
$$\frac{3}{4} = \frac{12}{12}$$

(a)
$$\frac{2}{3} = \frac{1}{6}$$
 (b) $\frac{1}{5} = \frac{1}{20}$ (c) $\frac{3}{4} = \frac{1}{12}$ (d) $\frac{5}{7} = \frac{10}{7}$

(e)
$$\frac{15}{5} = \frac{15}{25}$$

(f)
$$\frac{4}{2} = \frac{12}{21}$$

(e)
$$\frac{15}{5} = \frac{15}{25}$$
 (f) $\frac{4}{5} = \frac{12}{21}$ (g) $\frac{3}{10} = \frac{14}{50}$ (h) $\frac{7}{8} = \frac{14}{50}$

(h)
$$\frac{7}{8} = \frac{14}{8}$$

(i)
$$\frac{3}{4} = \frac{30}{1}$$

(j)
$$\frac{1}{8} = \frac{55}{88}$$

(k)
$$\frac{2}{9} = \frac{10}{10}$$

(i)
$$\frac{3}{4} = \frac{30}{4}$$
 (j) $\frac{2}{8} = \frac{55}{88}$ (k) $\frac{2}{9} = \frac{10}{4}$ (l) $\frac{2}{3} = \frac{18}{18}$

$$\frac{\text{(m)}}{20} = \frac{5}{20}$$

$$\frac{5}{6} = \frac{18}{18}$$

(o)
$$\frac{3}{9} = \frac{9}{9}$$

$$\frac{\text{(m)}}{20} = \frac{5}{6}$$
 $\frac{\text{(n)}}{6} = \frac{5}{18}$ $\frac{\text{(o)}}{8} = \frac{9}{8}$ $\frac{\text{(p)}}{12} = \frac{7}{36}$

Question 2: Find the missing numbers

(a)
$$\frac{6}{7} = \frac{42}{7}$$

(a)
$$\frac{6}{7} = \frac{42}{7}$$
 (b) $\frac{9}{20} = \frac{63}{7}$ (c) $\frac{5}{12} = \frac{35}{7}$ (d) $\frac{7}{8} = \frac{64}{64}$

(c)
$$\frac{5}{12} = \frac{35}{12}$$

(d)
$$\frac{7}{8} = \frac{7}{64}$$

(e)
$$\frac{4}{72} = \frac{32}{72}$$

(f)
$$\frac{3}{4} = \frac{3}{52}$$

(g)
$$\frac{7}{25} = \frac{140}{}$$

(e)
$$\frac{4}{7} = \frac{32}{72}$$
 (f) $\frac{3}{4} = \frac{32}{52}$ (g) $\frac{7}{25} = \frac{140}{72}$ (h) $\frac{15}{15} = \frac{42}{105}$

(i)
$$\frac{11}{16} = \frac{88}{16}$$

(j)
$$\frac{2}{9} = \frac{2}{108}$$

$$\frac{\text{(k)}}{25} = \frac{13}{375}$$

(i)
$$\frac{11}{16} = \frac{88}{100}$$
 (j) $\frac{2}{9} = \frac{108}{108}$ (k) $\frac{13}{25} = \frac{100}{375}$ (l) $\frac{9}{100} = \frac{81}{144}$

Apply

Question 1: Write down 3 different fractions that are equivalent to $\frac{1}{2}$

Question 2: Write down 3 different fractions that are equivalent to $\frac{3}{5}$

Question 3: Write down 3 different fractions that are equivalent to $\frac{l}{12}$

Equivalent Fractions Video 135 on www.corbettmaths.com

Dave and Tom are discussing fractions. Question 4: Is either man correct?

Question 5: Use the grid to explain why $\frac{3}{4}$ cannot be written as a fraction with a denominator of 15.

Question 6: Macey has completed her maths homework. Can you explain what she has done wrong?

$$\frac{3}{4} = \frac{4}{16}$$

$$\frac{7}{8} = \frac{35}{5}$$

$$\frac{3}{5} = \frac{6}{15}$$

$$\frac{2}{8} = \frac{16}{40}$$

Fractions: Simplifying

Video 146 on www.corbettmaths.com

Workout

Question 1: Simplify fully

$$\begin{array}{c} \text{(a)} \quad \frac{2}{4} \end{array}$$

$$\frac{(b)}{9}$$

(c)
$$\frac{6}{8}$$

$$\frac{\text{(d)}}{15}$$

(e)
$$\frac{4}{6}$$

$$(f) \quad \frac{9}{12}$$

$$\frac{(g)}{15}$$

$$\begin{array}{c} \text{(i)} \quad 8 \\ \hline 12 \end{array}$$

$$\frac{(j)}{14}$$

$$\frac{(k)}{35}$$

$$\frac{6}{21}$$

$$\frac{18}{22}$$

$$\frac{(n)}{20}$$

$$\frac{9}{24}$$

$$\frac{20}{30}$$

$$\frac{(r)}{500}$$

Question 2: Cancel down each fraction to its simplest form

(a)
$$\frac{14}{35}$$

$$\frac{(c)}{24}$$

$$\begin{array}{c} \text{(d)} \ \, 75 \\ \hline 100 \end{array}$$

$$\frac{(e)}{80}$$

$$\frac{(f)}{42}$$

$$\frac{70}{120}$$

$$\frac{22}{110}$$

$$\frac{18}{72}$$

$$\frac{60}{140}$$

$$\frac{40}{360}$$

$$\frac{64}{100}$$

$$\frac{48}{36}$$

Question 3: Simplify fully

$$\frac{(a)}{225}$$

$$\frac{\text{(c)}}{288}$$

$$^{(d)} \frac{230}{495}$$

Fractions: Simplifying

Video 146 on www.corbettmaths.com

Apply

Question 1: Which fractions below are equivalent to $\frac{2}{3}$?

$$\frac{4}{6}$$
 $\frac{6}{8}$ $\frac{8}{12}$ $\frac{9}{12}$ $\frac{10}{15}$

Question 2: James says that $\frac{1}{3}$ of the grid is shaded

Cara says $\frac{4}{12}$ of the grid is shaded.

Explain how they are both correct.

Question 3: Given that $5 \times 13 = 65$ and $7 \times 13 = 91$ simplify fully $\frac{65}{91}$

Question 4: Freddy has 40 cupcakes.
20 of the cupcakes are chocolate.
10 of the cupcakes are lemon.
8 of the cupcakes are strawberry.
The rest of the cupcakes of vanilla.

- (a) What fraction of the cupcakes are chocolate? Give the fraction in its simplest form.
- (b) What fraction of the cupcakes are lemon? Give the fraction in its simplest form.
- (c) What fraction of the cupcakes are strawberry? Give the fraction in its simplest form.
- (d) What fraction of the cupcakes are vanilla? Give the fraction in its simplest form.
- Question 5: There are 200 students in a primary school. 80 students wear glasses.

 What fraction of the students wear glasses? Give the fraction in its simplest form.
- Question 6: Sarah has £240 and she gives her mum £80. What fraction of the money does Sarah have left? Give the fraction in its simplest form.

Expressing as a Fraction

Video 136 on www.corbettmaths.com

Workout

Question 1: Give each answer as a simplified fraction

(a)	Write 5 days as a fraction of 20 days	(b) Write £6 as a fraction of £8

(c) Write 10p as a fraction of 30p (d) Write 6kg as a fraction of 1

(g) Write 8p as a fraction of 40p (h) Write	52p as a fraction of 90p
---	--------------------------

(i) Write 3	30ml as a fi	raction of 1	10ml	(j)	Write 3	360kg as	a fraction (of 480kg
-------------	--------------	--------------	------	-----	---------	----------	--------------	----------

Question 2: Give each answer as a simplified fraction

(a) Write 2 days as a fraction of 1 week	(b) Write 40p as a fraction of £3
(~	, =	(5)

(c)	Write 5 minutes as a fraction of 2 hours	(d)) Write 2 months as a fraction of 1 y	'ear
-----	--	-----	---------------------------------------	------

(e)	Write 500g as a fraction of 40kg	(f) Write 750ml as a fraction of 3 litres
161	WITE JUUS AS A HACHUH UI TUKS	THE WITE / JUILLAS A HACHUH OF JULIES

(g)	Write 8g as a fraction of 4kg	(h)	Write 920m	m as a fraction of 12m
151	Wille of as a machon of the	(11)	*******	iiii as a ii actioii oi 12iii

(i) Write £1.85 as a fraction of (j) Write 50 seconds as a fraction of 1 hour

Apply

Question 1: There are 30 students in a class.

20 students have brown hair.

What fraction of the class have brown hair? Give your answer in its simplest form.

Question 2: A bag contains red and white sweets.

> There are 12 red sweets and 8 white sweets. What fraction of the sweets are white? Give your answer in its simplest form.

Question 3: Over one day, Rebecca spends 6 hours sleeping.

What fraction of the day is Rebecca awake?

Give your answer in its simplest form.

Expressing as a Fraction

Video 136 on www.corbettmaths.com

Question 4: John has 12 pieces of card, each with a letter written on it.

- (a) What fraction of the letters are the letter T?
- (b) What fraction of the letters are the letter A?
- (c) What fraction of the letters are vowels?
- (d) What fraction of the letters are **not** the letter T?

Question 5: Jemima receives £5 pocket money. She spends £1.75 on a magazine and 80p on a drink.

- (a) What fraction of the pocket money has she spent?
- (b) What fraction of the pocket money does Jemima have left?

Question 6: In a town in Cornwall, it rained for 18 days during April. What fraction of the month did it rain?

Question 7: Barry is saving money towards a new motorbike that costs £4,000. Each month, he saves £5 more than the previous month. In January he saves £60. Over the first year of saving money, what fraction of the cost has he saved?

Question 8: In Victoria's class, there are 30 students. Explain why Victoria must be wrong.

Exactly $\frac{2}{7}$ of the students in the class wear glasses.

Question 9: Nigel has completed his homework. Can you spot any mistakes?

In a bag there are 80 beads.
There are 35 yellow beads.
There are 17 red beads.
The rest of the beads are white.

$$35 + 17 = 52$$

 $80 - 52 = 38$

Work out what fraction of the beads are white. Give your answer in its simplest form.

$$\frac{38}{80} = \frac{19}{40}$$

Workout

Question 1: Work out the following additions. You may use the shapes to help.

(a)

(b)

(c)

(d)

Question 2: Work out the following additions

(a)
$$\frac{1}{5} + \frac{1}{5}$$

(a)
$$\frac{1}{5} + \frac{1}{5}$$
 (b) $\frac{3}{11} + \frac{2}{11}$ (c) $\frac{1}{9} + \frac{7}{9}$ (d) $\frac{3}{7} + \frac{3}{7}$

(c)
$$\frac{1}{9} + \frac{7}{9}$$

(d)
$$\frac{3}{7} + \frac{3}{7}$$

15

(e)
$$\frac{6}{11} + \frac{2}{11}$$

(f)
$$\frac{7}{13} + \frac{4}{13}$$

(g)
$$\frac{3}{5} + \frac{1}{5}$$

(e)
$$\frac{6}{11} + \frac{2}{11}$$
 (f) $\frac{7}{13} + \frac{4}{13}$ (g) $\frac{3}{5} + \frac{1}{5}$ (h) $\frac{10}{21} + \frac{10}{21}$

Question 3: Work out the following subtractions

(a)
$$\frac{3}{5} - \frac{1}{5}$$

(b)
$$\frac{6}{7} - \frac{2}{7}$$

(c)
$$\frac{4}{5} - \frac{3}{5}$$

(a)
$$\frac{3}{5} - \frac{1}{5}$$
 (b) $\frac{6}{7} - \frac{2}{7}$ (c) $\frac{4}{5} - \frac{3}{5}$ (d) $\frac{7}{13} - \frac{1}{13}$

(e)
$$\frac{9}{11} - \frac{6}{11}$$

$$\frac{16}{21} - \frac{8}{21}$$

(g)
$$\frac{5}{6} - \frac{5}{6}$$

(e)
$$\frac{9}{11} - \frac{6}{11}$$
 (f) $\frac{16}{21} - \frac{8}{21}$ (g) $\frac{5}{6} - \frac{5}{6}$ (h) $\frac{16}{25} - \frac{9}{25}$

Question 4: Work out the following additions and subtractions Simplify your answers if possible

(a)
$$\frac{1}{4} + \frac{1}{4}$$

(b)
$$\frac{5}{6} - \frac{1}{6}$$

(c)
$$\frac{3}{8} + \frac{3}{8}$$

(a)
$$\frac{1}{4} + \frac{1}{4}$$
 (b) $\frac{5}{6} - \frac{1}{6}$ (c) $\frac{3}{8} + \frac{3}{8}$ (d) $\frac{7}{10} - \frac{3}{10}$

(e)
$$\frac{2}{9} + \frac{4}{9}$$

$$^{(f)}\frac{3}{20} + \frac{7}{20}$$

(g)
$$\frac{1}{12} + \frac{5}{12}$$

(e)
$$\frac{2}{9} + \frac{4}{9}$$
 (f) $\frac{3}{20} + \frac{7}{20}$ (g) $\frac{1}{12} + \frac{5}{12}$ (h) $\frac{17}{30} - \frac{7}{30}$

Adding Fractions: Same Denominators

Video 132 on www.corbettmaths.com

(i)
$$\frac{19}{20} - \frac{7}{20}$$

(j)
$$\frac{11}{18} + \frac{5}{18}$$

(i)
$$\frac{19}{20} - \frac{7}{20}$$
 (j) $\frac{11}{18} + \frac{5}{18}$ (k) $\frac{9}{16} - \frac{7}{16}$ (l) $\frac{19}{80} + \frac{31}{80}$

(l)
$$\frac{19}{80} + \frac{31}{80}$$

Question 5: Work out the following additions.

(a)
$$\frac{2}{3} + \frac{2}{3}$$

(b)
$$\frac{4}{5} + \frac{3}{5}$$

(a)
$$\frac{2}{3} + \frac{2}{3}$$
 (b) $\frac{4}{5} + \frac{3}{5}$ (c) $\frac{7}{10} + \frac{4}{10}$ (d) $\frac{3}{8} + \frac{5}{8}$

(d)
$$\frac{3}{8} + \frac{5}{8}$$

(e)
$$\frac{9}{11} + \frac{10}{11}$$

(f)
$$\frac{9}{20} + \frac{13}{20}$$

(e)
$$\frac{9}{11} + \frac{10}{11}$$
 (f) $\frac{9}{20} + \frac{13}{20}$ (g) $\frac{8}{13} + \frac{6}{13}$ (h) $\frac{41}{50} + \frac{19}{50}$

(h)
$$\frac{41}{50} + \frac{19}{50}$$

Apply

Question 1: On Monday, James ate $\frac{1}{8}$ of a cake. On Tuesday, he ate $\frac{3}{8}$ of the same cake.

In total, how much of the cake has James eaten?

Question 2: At a rugby match, $\frac{3}{5}$ of the crowd are male. What fraction of the crowd are female?

In one season, a netball team won $\frac{4}{7}$ of their matches. Question 3: They drew $\frac{2}{7}$ of their matches.

What fraction of the matches did they lose?

Question 4: In a school, pupils study French, German or Spanish. $\frac{1}{\Omega}$ of the pupils study Spanish.

What fraction of the pupils study French?

Half of the remaining pupils study French.

Adding Fractions: Same Denominators

Video 132 on www.corbettmaths.com

Question 5: Find the distance from the hotel to the shop.

Question 6: A wooden rod is $\frac{4}{5}m$ long.

Find the total length of 4 wooden rods.

Question 7: Three fractions have been added together and the answer is $\frac{17}{20}$ Write down three fractions that may have been added together.

Question 8: James adds together two fractions. Both fractions are the same.

The answer is $1\frac{5}{9}$

Find the two fractions.

Question 9: Will has completed his homework. Can you spot any mistakes?

Question 1

Work out

$$\frac{11}{15} - \frac{2}{15}$$
Simplify your answer.
$$\frac{13}{15}$$

Question 2

There are red counters, blue counters and green counters in a bag.

5/8 of the counters are red.

1/8 of the counters are blue.

What fraction of the counters are green?

$$\frac{6}{8} = \frac{3}{4}$$