2013 Mathematics

Advanced Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2013
The information in this publication may be reproduced to support SQA qualifications only on a noncommercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Part One: General Marking Principles for Mathematics Advanced Higher

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the specific Marking Instructions for each question.
(a) Marks for each candidate response must always be assigned in line with these general marking principles and the specific Marking Instructions for the relevant question. If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Principal Assessor.
(b) Marking should always be positive i.e, marks should be awarded for what is correct and not deducted for errors or omissions.

GENERAL MARKING ADVICE: Mathematics Advanced Higher

The marking schemes are written to assist in determining the "minimal acceptable answer" rather than listing every possible correct and incorrect answer. The following notes are offered to support Markers in making judgements on candidates' evidence, and apply to marking both end of unit assessments and course assessments.

General Marking Principles

These principles describe the approach taken when marking Advanced Higher Mathematics papers. For more detailed guidance please refer to the detailed Marking Instructions.

1 The main principle is to give credit for the skills demonstrated and the criteria met. Failure to have a correct method may not preclude a candidate gaining credit for their solution.

2 The answer to one part of a question, even if incorrect, can be accepted as a basis for subsequent dependent parts of the question.

3 The following are not penalised:

- working subsequent to a correct answer (unless it provides firm evidence that the requirements of the question have not been met)
- legitimate variation in numerical values / algebraic expressions.

4 Full credit will only be given where the solution contains appropriate working. Where the correct answer might be obtained by inspection or mentally, credit may be given.

5 Sometimes the method to be used in a particular question is explicitly stated; no credit will be given where a candidate obtains the correct answer by an alternative method.

6 Where the method to be used in a particular question is not explicitly stated in the question paper, full credit is available for an alternative valid method. (Some likely alternatives are included but these should not be assumed to be the only acceptable ones.)

In the detailed Marking Instructions which follow, marks are shown alongside the line for which they are awarded. When marking, no comments at all should be made on the script. The total mark for each question should appear in one of the right-hand margins. The following codes should be used where applicable:
\checkmark - correct; $\quad \mathrm{X}$ - wrong; working underlined - wrong;
tickcross - mark(s) awarded for follow-through from previous answer;
$\wedge \wedge$ - mark(s) lost through omission of essential working or incomplete answer;
wavy or broken underline - bad form, but not penalised.

Part Two: Marking Instructions for each Question

Notes:

1.1 Accept negative indices.
1.2 Award • ${ }^{1} n \mathrm{Cr}$ or $\binom{n}{r}$ form.
1.3 Including signs. " + -" or "- -" : do not award \bullet^{4}
1.4 Expanding wrong expression: $\left(3 x-\frac{2}{x}\right)^{4}, \bullet^{1} \bullet^{4}$ only are available.
1.5 Expanding $\left(3 x+\frac{2}{x^{2}}\right)^{4}$, $\bullet^{1} \cdot{ }^{3} \cdot{ }^{4}$ only are available.
2.

$$
\text { Differentiate } f(x)=e^{\cos x} \sin ^{2} x
$$

$$
f^{\prime}(x)=e^{\cos x}(-\sin x) \cdot \sin ^{2} x+e^{\cos x} \cdot 2 \sin x \cos x
$$

$$
=-e^{\cos x} \sin ^{3} x+e^{\cos x} \cdot 2 \sin x \cos x
$$

$$
=e^{\cos x}\left(\sin 2 x-\sin ^{3} x\right)
$$

$$
=e^{\cos x} \sin x\left(2 \cos x-\sin ^{2} x\right)
$$

3

- ${ }^{1} \quad$ Uses product rule. ${ }^{1}$
- ${ }^{2}$ First term correct.
- ${ }^{3}$ Second term correct. ${ }^{2}$

Simplified alternatives.

Notes:

2.1 Evidence of method: Statement of the rule and evidence of progress in applying it.

OR Application showing the sum of two terms, both involving differentiation.
2.2 Signs switched: $\bullet^{1} \bullet^{3}$ available for $e^{\cos x} \sin ^{3} \mathrm{x}-\mathrm{e}^{\cos x} \cdot 2 \sin x \cos x \quad$ or equivalent.

Question		Expected Answer/s	Max Mark	Additional Guidance
3.	a	Matrices A and B are defined by $A=\left(\begin{array}{rr}4 & p \\ -2 & 1\end{array}\right)$ and $B=\left(\begin{array}{rr}x & -6 \\ 1 & 3\end{array}\right)$ (a) Find A^{2}. (b) Find the value of \boldsymbol{p} for which A^{2} is singular. (c) Find the values of p and x if $B=3 A^{\prime}$. $\begin{aligned} A^{2}=\left(\begin{array}{rr} 4 & p \\ -2 & 1 \end{array}\right)\left(\begin{array}{rr} 4 & p \\ -2 & 1 \end{array}\right) & =\left(\begin{array}{ll} 16-2 p & 4 p+p \\ -8-2 & -2 p+1 \end{array}\right) \\ & =\left(\begin{array}{ll} 16-2 p & 5 p \\ -10 & 1-2 p \end{array}\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	- ${ }^{1}$ Correct answer. ${ }^{3,1}$ Improved alternative.
	b	$\begin{aligned} A^{2} \text { is singular when } \operatorname{det} A^{2} & =0 \\ (16-2 p)(1-2 p)+50 p & =0 \\ 16-34 p+4 p^{2}+50 p & =0 \\ 4 p^{2}+16 p+16 & =0 \\ 4(p+2)^{2} & =0 \\ \boldsymbol{p} & =\mathbf{- 2} \end{aligned}$ OR A^{2} is singular when A is singular, [i.e. when $\operatorname{det} A=0$] $\begin{aligned} 4+2 p & =0 \\ \boldsymbol{p} & =-\mathbf{2} \end{aligned}$		- ${ }^{2}$ Property stated or implied. ${ }^{4}$ - ${ }^{3}$ Correct value of $p .^{5,1}$ - ${ }^{2}$ Explicitly states property. [not essential, but preferred] - ${ }^{3}$ Correct value of p^{1}
	c	$\begin{aligned} & A^{\prime}=\left(\begin{array}{rr} 4 & -2 \\ p & 1 \end{array}\right) \\ & \left(\begin{array}{rr} x & -6 \\ 1 & 3 \end{array}\right)=3\left(\begin{array}{rr} 4 & -2 \\ p & 1 \end{array}\right) \\ & \left(\begin{array}{rr} x & -6 \\ 1 & 3 \end{array}\right)=\left(\begin{array}{rr} 12 & -6 \\ 3 p & 3 \end{array}\right) \quad x=12, p=\frac{1}{3} \end{aligned}$		- ${ }^{4} \quad A$ transpose (A^{T}) correct. Does not have to be explicitly stated. - \quad Values of p and x correct. ${ }^{1,2}$

Notes:

3.1 For (a) and (c), statement of answers only: award full marks. For (b), $p=-2$ only, award \bullet^{3} only (1 out of 2)
3.2 Misinterpretation of A^{T} as inverse leading to $p=0$ and $x=\frac{3}{4}$ OR to $p=-\frac{8}{3}$ and $x=-\frac{9}{4}$ OR to $p=1$ and $x=\frac{1}{2}$ OR any other set of inconsistent equations: do not award \bullet^{4} or \bullet^{5} i.e. 0 out of 2 .
3.3 Accept unsimplified answers.
3.4 Usually implied by next line.
3.5 For any equation based on answer to (a), correctly obtaining all possible solutions, including complex, $\bullet^{2} \bullet^{3}$ both available. "No solutions", "not possible" etc. \bullet^{3} not available, even if true.

Question		Expected Answer/s	Max Mark	Additional Guidance
4.	a	The velocity, \boldsymbol{v}, of a particle P at time \boldsymbol{t} is given by $v=e^{3 t}+2 e^{\mathrm{t}} .$ (a) Find the acceleration of P at time t. (b) Find the distance covered by P between $t=0$ and $t=\ln 3$. $\begin{gathered} a=\frac{d v}{d t} \\ =3 e^{3 t}+2 e^{t} \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	- ${ }^{1}$ Evidence of knowing to differentiate. ${ }^{2}$ - ${ }^{2}$ Correct completion.
	b	$\begin{aligned} s=\int_{0}^{\ln 3} v d t & =\int_{0}^{\ln 3}\left(e^{3 t}+2 \mathrm{e}^{t}\right) d t \\ & =\left[\frac{1}{3} e^{3 t}+2 e^{t}\right]_{0}^{\ln 3} \\ & =\left(\frac{1}{3} e^{3 \ln 3}+2 e^{\ln 3}\right)-\left(\frac{1}{3}+2\right) \\ & =\frac{1}{3} e^{\ln 3^{3}}+2 e^{\ln 3}-\frac{7}{3} \\ & =\frac{1}{3} \times 27+2 \times 3-\frac{7}{3} \\ & =\frac{38}{3} \text { or } 12 \frac{2}{3} \text { or equivalent } \end{aligned}$		- ${ }^{3}$ Correctly set up integral. - ${ }^{4}$ Integrating correctly. - ${ }^{5}$ Evaluates correctly. ${ }^{1,3}$
Notes:				
4.1 4.2 4.3 4.4	Accep Accep Except Evalua Candid " +c ".	rounded answers without working between \bullet^{4} and \bullet to 3 s.f. $12 \cdot \dot{6}$, but not $12 \cdot 6,12$ or 13 . nally, accept statement of formula as sufficient evidence for on of any incorrect function may be awarded $\bullet{ }^{5}$ if evaluation of tes may integrate v to obtain an expression for s and evaluate	better. least o m there.	$\mathrm{e}^{\ln q}$ involved. o not penalise the omission of

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Question} \& Expected Answer/s \& Max Mark \& Additional Guidance \\
\hline 5. \& \& Use the Euclidean algorithm to obtain the greatest common divisor of \(\mathbf{1 2 0 4}\) and 833, expressing it in the form \(1204 a+833 b\), where \(a\) and \(b\) are integers.
\[
\begin{aligned}
1204 \& =1 \times 833+371 \\
833 \& =2 \times 371+91 \\
371 \& =4 \times 91+7 \\
91 \& =13 \times 7 \quad \text { so gcd is } 7 \\
7 \& =371-4 \times 91 \\
\& =371-4(833-2 \times 371) \\
\& =9 \times 371-4 \times 833 \\
\& =9(1204-1 \times 833)-4 \times 833 \\
\& =9 \times 1204-13 \times 833 \\
(a= \& 9, b=-13)
\end{aligned}
\] \& 4 \& \begin{tabular}{l}
- \({ }^{1}\) Starting correctly. \\
- \({ }^{2}\) Obtains GCD. \\
Accept \((833,1204)=7\) \\
- \({ }^{3}\) Equates GCD from \(\bullet^{2}\) and evidence of correct back substitution. \({ }^{1,4}\) \\
- \({ }^{4}\) Correct form of final answer. \({ }^{5}\)
\end{tabular} \\
\hline \multicolumn{5}{|l|}{Notes:} \\
\hline 5.1
5.2
5.3
5.4

5.5

5.6 \& \[
$$
\begin{aligned}
& 7=37 \\
& a, b \text { do } \\
& \text { Accep } \\
& \text { Where } \\
& \text { (or to } \\
& \text { For sta } \\
& \text { Where } \\
& \text { inappr }
\end{aligned}
$$

\] \& | -4×91 not sufficient for \bullet^{3}. |
| :--- |
| ot need to be stated explicitly. |
| a properly laid out grid approach. |
| andidate incorrectly starts " $0=\ldots$ " and correctly completes $=119$ and $b=-172$). |
| ng " $a=9, b=-13$ " and nothing else, the question has not $=9 \times 1204-13 \times 833$, or arithmetically correct equivalen riate method or without supporting working, \bullet^{4} is availabl | \& | vailabl |
| :--- |
| answ owing \bullet^{3} is | \& | Leads to $a=-119$ and $b=172$ |
| :--- |
| d, so 0/4. |
| m a wrong GCD with an |

\hline
\end{tabular}

Notes:

7.1 Accept $2 \operatorname{cis} \frac{\pi}{3}$ for $\bullet^{2} \& \bullet^{3}$.
7.2 Accept angles expressed in degrees, i.e. $60^{\circ}, 120^{\circ}$.
7.3 Where a candidate has applied de Moivre's theorem to $k(\cos \theta-i \sin \theta)$, do not penalise.
7.4 Correct polar form only. Answer in form $k(\cos \theta-i \sin \theta)$ loses \bullet^{4} unless correct form appears also.
7.5 Accept answers from $-\pi$ to 2π as being in polar form. For answers outside this range, do not award \bullet^{4}.
7.6 Since it is possible to use the conjugate of z^{2} to find \bar{z}^{2} award \bullet^{2} for $z=2 \operatorname{cis} \frac{5 \pi}{3}$ or $2 \operatorname{cis}\left(-\frac{\pi}{3}\right)$ and \bullet^{3} for $z^{2}=4 \operatorname{cis} \frac{4 \pi}{3}$ or $4 \operatorname{cis}\left(-\frac{2 \pi}{3}\right)$, but only \bullet^{3} for $\bar{z}^{2}=4 \operatorname{cis} \frac{4 \pi}{3}$ or $4 \operatorname{cis}\left(-\frac{2 \pi}{3}\right)$.

8.1 Selection of parts wrong way round, leading to $\frac{1}{3} x^{3} \cos 3 x-\int-\frac{1}{3} \mathrm{x}^{3} \cdot 3 \cdot \sin 3 \mathrm{x} \mathrm{dx}$ and no further, gains $\bullet^{1} \& \bullet^{3}$.
$8.2 \bullet^{4} \& \bullet^{5}$ available for follow through marks with a valid expression of equivalent difficulty.
8.3 Do not penalise omission of " $+c$ " in this case.
8.4 For a follow through mark to be awarded here, fractions and three (or more) trig functions are required.

Question		Expected Answer/s	Max Mark	Additional Guidance
12.	A	Let n be a natural number. For each of the following statements, decide whether it is true or false. If true, give a proof, if false, give a counterexample. A If \boldsymbol{n} is a multiple of 9 then so is $\boldsymbol{n}^{\mathbf{2}}$. B If \boldsymbol{n}^{2} is a multiple of 9 then so is \boldsymbol{n}. Suppose $n=9 m$ for some natural number [positive integer], m. Then $n^{2}=81 m^{2}=9\left(9 m^{2}\right)$ Hence n^{2} is a multiple of 9 , so \mathbf{A} is true.	4	- ${ }^{1}$ Generalisation, using different letter. ${ }^{3,6}$ - ${ }^{2}$ Correct multiplication and 9 extracted as a factor. - Conclusion of proof and state A true. ${ }^{1}$
	B	False. Accept any valid counterexample: $n=3,6,12,15,21$ etc		-4 Valid counterexample and conclusion. ${ }^{5}$
$\begin{aligned} & \hline \text { Note } \\ & 12.1 \\ & 12.2 \\ & 12.3 \\ & 12.4 \\ & 12.5 \\ & 12.6 \\ & 12.7 \end{aligned}$	Final No cr Do no Any Coun Starti A 'wo to ach	ark $\left(\bullet^{3}\right)$ not available unless evidence of a proof attempted. t given for numerical examples without generalisation. penalise failure to specify that m is a natural number. mber of numerical examples on their own secures no marks. examples must have n as a natural number (positive integer) $n^{2}=(9 n)^{2}$ i.e. using the same letter on both sides, leads in -based' proof is very unlikely to be awarded full marks for ve with words alone. A clear, logical answer of this type can	orably s the cess	3. a for \bullet^{2} will be very difficult \bullet^{3}.

Question		Expected Answer/s	Max Mark	Additional Guidance
13.	a	Part of the straight line graph of a function $f(x)$ is shown. (a) Sketch the graph of $f^{-1}(x)$, showing points of intersection with the axes. (b) State the value of k for which $f(x)+k$ is an odd function. (c) Find the value of h for which $\|f(x+h)\|$ is an even function.	1 2	- ${ }^{1}$ Straight line with negative gradient crossing the positive sections of the x - and y-axes. - ${ }^{2}$ Both intersections correctly annotated.
	b	$y=f(x)-c$ is odd. $\quad \therefore \boldsymbol{k}=-\boldsymbol{c}$		$\bullet{ }^{3}$ Correctly stated.
	c			- ${ }^{4} \quad$ Sketch of $y=\|f(x)\|$ with point of reflection marked. -5 Explicit statement of answer.

Notes:

13.1 Answer $h=2$ only, no other working or diagram, award full marks [2 out of 2].
13.2 Where a candidate has clearly used their diagram from part (a) as the basis for (b) and (c), leading to $k=-2$ and $h=c$ (with working/further diagram) award $\bullet^{4} \bullet^{5}$ and not \bullet^{3} (2 out of the three marks for (a) and (b)). Statement of above answers only, zero out of 3 .
13.3 An accurate diagram of $\mathrm{y}=f(\mathrm{x}+2)$, on its own, gains no marks.

Question 14 Notes:

14.1 Accept $\left(\mathrm{C} x^{2}+\mathrm{D} x+\mathrm{E}\right) e^{3 x}$ or equivalent for \bullet^{3}.
14.2 Accept correctly differentiated version of $\left(\mathrm{C} x^{2}+\mathrm{D} x+\mathrm{E}\right) e^{3 x}$ or equivalent for \bullet^{4}.
14.3 Must be of equivalent difficulty if wrong P.I. used to obtain \bullet^{4}. i.e. contains at least one use of prod/quot rule.
14.4 Must be of equivalent difficulty if wrong $1^{\text {st }}$ derivative used to obtain \bullet^{5} i.e. contains at least one use of prod/quot rule.
14.5 And other constants, e.g. D and $\mathrm{E}=0$, where using alternative P.I.s as note 14.1.
14.6 Not needed if subsequent lines incorporate information, especially \bullet^{9} or \bullet^{11}.
14.7 Incorrectly using $y=C x e^{3 x}$ for P.I. leading to $A=1$ and $B=-4, \bullet^{4} \cdot \bullet^{6} \cdot{ }^{9} \cdot{ }^{10}{ }^{11}$ still available. i.e. max 7 (out of 11). To be awarded \bullet^{6}, a correct differentiation of the first derivative is required as well as correct substitution.
14.8 Incorrectly using $y=C e^{3 x}$ for P.I. leading to $A=1$ and $B=-4, \bullet^{9} \bullet^{10} \bullet^{11}$ still available. i.e. max 5 (out of 11).
14.9 Incorrectly using $y=A e^{3 x}+B e^{3 x}$ and using $y=C e^{3 x}$ for P.I., ${ }^{9}$ still available. i.e. max 2 (out of 11).
14.10 Incorrectly using $y=A e^{3 x}+B e^{3 x}$ and using $y=C x e^{3 x}$ for P.I., $\bullet^{4} \bullet^{9}$ still available. i.e. max 3 (out of 11).
14.11 Do not penalise omission of " $=0$ " in first two lines.

Questio		Expected Answer/s	Max Mark	Additional Guidance
15.	a	(a) Find an equation of the plane π_{1}, through the points $A(0,-1,3), B(1,0,3)$ and $C(0,0,5)$. (b) π_{2} is the plane through A with normal in the direction $-\mathbf{j}+\mathbf{k}$. Find an equation of the plane π_{2}. (c) Determine the acute angle between planes π_{1} and π_{2}. $\begin{aligned} & \overrightarrow{A B}=\left(\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right) \quad \overrightarrow{A C}=\left(\begin{array}{l} 0 \\ 1 \\ 2 \end{array}\right) \quad \mathbf{O R} \quad \overrightarrow{B C}=\left(\begin{array}{l} -1 \\ 0 \\ 2 \end{array}\right) \\ & \overrightarrow{A B} \times \overrightarrow{A C}=\left\|\begin{array}{llr} i & j & k \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{array}\right\| \text { or equivalent } \\ & =2 \mathbf{i}-2 \mathbf{j}+\mathbf{k} \\ & 2 x-2 y+z=2 \times 0-2 \times-1+1 \times 3 \\ & \pi_{1}: 2 x-2 y+z=\mathbf{5} \\ & \text { OR } \quad \mathrm{r}=\left(\begin{array}{r} 0 \\ -1 \\ 3 \end{array}\right)+\lambda\left(\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right)+\mu\left(\begin{array}{l} 0 \\ 1 \\ 2 \end{array}\right) \text { or equivalent } \end{aligned}$	4 2 3	- ${ }^{1}$ Any two correct ${ }^{1}$ vectors. ${ }^{2}$ - ${ }^{2}$ Evidence of appropriate method. ${ }^{3}$ -3 Obtains vector product (any form). - Obtains constant and states equation of plane.
	b	$0 \times 0+(-1) \times(-1)+1 \times 3=4$ $\pi_{2}:-y+z=4$		- 5 Evidence of appropriate method. ${ }^{4}$ - ${ }^{6}$ Processes to obtain equation of second plane.
	c	Normal vectors: $\boldsymbol{n}_{1}=\left(\begin{array}{l} 2 \\ -2 \\ 1 \end{array}\right) \text { and } \boldsymbol{n}_{2}=\left(\begin{array}{l} 0 \\ -1 \\ 1 \end{array}\right),\left\|\boldsymbol{n}_{1}\right\|=\sqrt{9}=3,\left\|\boldsymbol{n}_{2}\right\|=\sqrt{2}$ $\cos ($ angle between normals $)=$ $\begin{aligned} & \frac{\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}}{\left\|\boldsymbol{n}_{1}\right\|\left\|\boldsymbol{n}_{2}\right\|}=\frac{2 \times 0-2 \times-1+1 \times 1}{3 \sqrt{2}}=\frac{3}{3 \sqrt{2}}=\frac{1}{\sqrt{2}} \\ & \text { Angle }=45^{\circ} \end{aligned}$ acute angle between planes is $45^{\circ}\left(\right.$ or $\left.\frac{\pi}{4}\right)$.		- ${ }^{7}$ Obtains two correct lengths. - ${ }^{8}$ Evidence knows how to use formula. - ${ }^{9} \quad$ Processes to statement of answer. ${ }^{5}$

P.T.O. for alternative method for question $15(\mathrm{c})$ and marking notes for all parts of question 15.

Question		Expected Answer/s	Max	Additional Guidance
15.	c	OR $=2 i-2 j+k \text {, so }\|2 i-2 j+k\|=3 \text { and }\|-j+k\|=\sqrt{2}$ $3=\left\|n_{1}\right\| \cdot\left\|n_{2}\right\| \cdot \cos \theta=3 \sqrt{2} \cdot \cos \theta$ $\cos \theta=\frac{1}{\sqrt{2}} \text { so } \theta=\frac{\pi}{4} \quad\left(\text { or } 45^{\circ}\right)$		- ${ }^{7} \quad$ States vector and obtains moduli. - ${ }^{8}$ Evidence knows how to use formula. - ${ }^{9} \quad$ Processes to statement of answer.

Notes:

15.1 i.e. non-parallel.
15.2 Although unconventional, accept vectors written horizontally.
15.3 Do not award \bullet^{2} where co-ordinates of $\mathrm{A} / \mathrm{B} / \mathrm{C}$ used.
15.4 Award mark for obtaining value of constant $=4$ (or follow-through).
15.5 Where candidate uses $90^{\circ}-\theta$, only \bullet^{7} and \bullet^{8} available. So " $\theta=45^{\circ}$ so acute angle $=90^{\circ}-45^{\circ}=45^{\circ}$ " scores max of $2 / 3$.

Question		Expected Answer/s	$\begin{gathered} \hline \text { Max } \\ \text { Mark } \\ \hline \end{gathered}$	Additional Guidance
16.		(continued) $\begin{aligned} & P=1000 K e^{1000 t}-P K e^{1000 t} \\ & P+P K e^{1000 t}=1000 K e^{1000 t} \end{aligned}$ $\begin{aligned} P= & \frac{1000 K e^{1000}}{1+K e^{1000}} \\ & =\frac{1000 K}{e^{-1000 t}+K} \quad\left(\text { or } \frac{1000 e^{c}}{e^{-1000 t}+e^{c}}\right) \end{aligned}$		-6 Multiplies out fractions and collects P terms. - ${ }^{7} \quad$ Factorises and divides to obtain required form. ${ }^{2}$
		$\begin{aligned} & \text { Since } \mathrm{P}(0)=200, \quad 200=\frac{1000 K}{1+K} \\ & K=\frac{1}{4} \quad(\text { or } 0 \cdot 25) \\ & \text { Require } \quad 900=\frac{1000 \times 0 \cdot 25}{0 \cdot 25+e^{-1000 t}} \\ & 225+900 e^{-1000 t}=250 \\ & e^{1000 t}=36 \\ & 1000 t=\ln 36 \\ & t=\frac{1}{1000} \ln 36 \\ & {[\text { or } 0 \cdot 003584(4 \mathrm{sf})]} \end{aligned}$		- 8 Equates and process to obtain value of $K .{ }^{3}$ - 9 Inserts value of K and equates. - ${ }^{10}$ Solves to obtain value for $t .^{4}$

Notes:

16.1 Explanation of new constant not required. Do not penalise bad form when changing constants. E.g., for RHS $=$ $\mathrm{e}^{1000 \mathrm{t}+\mathrm{c}}$, award \bullet^{5}.
16.2 Both steps required as final result given in question.
16.3 Accept statement of value of K (consistent with previous working).
16.4 Accept approximation (2 sf or better), ie 0.0036 or 3.6×10^{-3}.
16.5 Do not penalise omission of integration symbols for \bullet.
16.6 Candidates putting $\ln P+\ldots$ lose \bullet^{4}.

Notes:

17.1 Do not penalise omission of ' $+c^{\prime}$ for \bullet^{3} or $\bullet^{5}\left(\right.$ or \bullet^{6} in alternative method). Mark for \bullet^{4} transferable: for the explicit evaluation of constant of integration on either (or both) of the integrals, award \bullet^{4} (or \bullet^{7} in alternative method).
17.2 To illustrate that series used (and not calculator), all 4 terms must appear for this mark to be awarded. For approximations, four or more decimal places in all four terms are required.
17.3 Any assumption that the two constants of integration are equal and can therefore be "cancelled out" loses $\bullet{ }^{4}$.
17.4 For an unsupported statement that $x=\frac{1}{3}$ award \bullet^{8} and $\bullet 9$.
17.5 For attempts using Maclaurin's Theorem, only terms up to and including x^{5} are required for \bullet^{3}, \bullet^{4}, and \bullet^{5}.
17.6 Attempts utilising Maclaurin's Theorem do not need to continue to the term in x^{7}, as the wording of the question implies continuation of the established pattern. Hence errors in calculating the terms in x^{6} and x^{7} may be considered working subsequent to a correct answer.
17.7 Differentiation of either $\ln \left(\frac{1+x}{1-x}\right)$ or both of $\ln (1+x)$ and $\ln (1-x)$. Also accept differentiation of either \ln expression and subsequent substitution of $(-x)$ for x to obtain the other (for \bullet^{3}, \bullet^{4}, and \bullet^{5}), \bullet^{6} for combining and \bullet^{7} for simplifying. Substitution of $\left(\frac{1+x}{1-x}\right)$ for x is not accepted as it leads to an expansion which cannot be approximated in the same way.
17.8 Simplification to penultimate line or equivalent required for award of \bullet^{7}.

[END OF MARKING INSTRUCTIONS]

