Sets and Functions

A set is a group of numbers which share common properties. Some common sets are:

Natural Numbers
Whole Numbers
Integers
Rational Numbers
Real Numbers

$$
\begin{gathered}
N=\{1,2,3,4,5, \ldots . .\} \\
W=\{0,1,2,3,4,5, \ldots . .\} \\
Z=\{\ldots .,-3,-2,-1,0,1,2,3, \ldots . .\} \\
Q=\text { all integers and fractions of them (e.g. } 3 / 4,-5 / 8, \text { etc) } \\
R=\text { all rational and irrational numbers (e.g. } \sqrt{2}, \pi, \text { etc. })
\end{gathered}
$$

Sets are written inside curly brackets. The set with no members " $\}$ " is called the empty set.
\in means "is a member of", e.g. $5 \in\{3,4,5,6,7\} \notin$ means "is not a member of", e.g. $5 \notin\{6,7,8\}$
A function is a rule which links an element in Set A to one and only one element in Set B.

This shows a function

This does not show a function

Example 1: Each function below is defined on the set of real numbers. State the range of each.
a) $f(x)=\sin x^{\circ}$
b) $g(x)=x^{2}$

c) $h(x)=1-x^{2}$
$n(x) \leq 1$

When choosing the domain, two cases
a) Denominators can't be zero MUST be avoided:
b) Can't find the square root of a negative value
e.g. For $f(x)=\frac{1}{x+5}, x \neq-5$, i.e. $\{x \in R: x \neq-5\}$
e.g. For $g(x)=\sqrt{x-3}, x \geq 3$, i.e. $\{x \in R: x \geq 3\}$

Example 2: For each function, state a suitable domain.
a) $g(x)=\sqrt{3 x-2}$
b) $p(\theta)=\frac{2}{5-\theta}$
c) $f(y)=\frac{y^{2}}{\sqrt{y-1}}$
$3 x-2 \geqslant 0$
$3 x \geqslant 2$
$x \geqslant \frac{2}{3}$
$5-0 \neq 0$
$-0 \neq-5$
$0 \neq 5$

$$
\begin{aligned}
& y-1>0 \\
& y \geqslant 1 .
\end{aligned}
$$

In the linear function $y=3 x-5$, we get y by doing two acts: (i) multiply x by 3; (ii) then subtract 5 . This is called a composite function, where we "do" a function to the range of another function.

Example 3: $\mathrm{f}(\mathrm{x})=5 \mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}^{2}+2 x$.
a) Find $f(g(-1))$

$$
\begin{aligned}
g(-1) & =3(-1)^{2}+2(-1) \\
& =3+(-2) \\
& =1 \\
f(1) & =5(1)+1 \\
& =6
\end{aligned}
$$

$$
\text { c) Find } f(f(x))
$$

b) Find $f(g(x))$

$$
\begin{aligned}
& =f\left(3 x^{2}+2 x\right) \\
& =5\left(3 x^{2}+2 x\right)+1 \\
& =15 x^{2}+10 x+1
\end{aligned}
$$

d) Find $g(f(x))$

$$
\begin{aligned}
& =9(5 x+1) \\
& =3(5 x+1)^{2}+2(5 x+1) \\
& =3\left(25 x^{2}+10 x+1\right)+10 x+2 \\
& =75 x^{2}+30 x+3+10 x+2 \\
& =75 x^{2}+40 x+5
\end{aligned}
$$

Higher Maths Notes
NOTE: Usually, $f(g(x))$ and $g(f(x))$ are NOT the same!
Example 4: $f(x)=2 x+1, g(x)=x^{2}+6$
a) Find formulae for:

$$
\begin{aligned}
& \text { (i) } f(g(x)) \\
& =2\left(x^{2}+6\right)+1 \\
& =2 x^{2}+12+1 \\
& =2 x^{2}+13
\end{aligned}
$$

(ii) $g(f(x))$
$(2 x+1)^{2}+6$ $4 x^{2}+4 x+7$
b) Solve the equation $f(g(x))=g(f(x))$

$$
2 x^{2}+13=4 x^{2}+6 x+7
$$

$2 x^{2}+\omega x-6=0$
$2\left(x^{2}+2 x-3\right)=0 x^{x} x^{3}$
$\alpha(x+3)(x-\cdots)=0$

$$
x=-3, x=1
$$

Example 5: $f(x)=\frac{3}{x+1}, x \neq-1$. Find an expression for $f(f(x))$, as a fraction in its simplest form.

Past Paper Example: Functions f and g are defined on a set of real numbers by
$f(x)=x^{2}+3 \quad g(x)=x+4$
a) Find expressions for:
(i) $f(g(x))$
(ii) $g(f(x)$
b) Show that $f(g(x))+g(f(x))=0$ has no real roots

Example 3: in the spaces provided, make a basic sketch of the graph(s) of the function(s) stated.
a) $y=2 x+1$
b) $3 x+4 y-12=0$
c) $y=-1$ and $x=5$

Example 4: Sketch and annotate the graph of

Example 5: Sketch and annotate the graph of $y=(x+3)^{2}+1$

Example 6: Sketch the graphs of $y=\sin x^{\circ}, y=\cos x^{\circ}$ and $y=\tan x^{\circ}$ below.

For trig graphs, how soon the graph repeats itself horizontally is known as the period, and half of the vertical height is known as the amplitude.

Function	Period	Amplitude
$y=\sin x^{\circ}$	360°	1
$y=\cos x^{\circ}$	360°	1
$y=\tan x^{\circ}$	180°	0

For the graphs of:
$y=a \sin b x^{\circ}+c$ and
$y=a \cos b x^{\circ}+c:$ $c=$ vertical shift $c=$ vertical shift

Example 7: Sketch the graphs of:

A compound angle is one containing two parts, e.g. $(x-60)^{\circ}$. The graphs of compound angles can be thought of as the trig version of $y=f(x-a)$, i.e. shifted left or right by a units.

Example 8: On the axes opposite, sketch:
a) $y=\sin x^{\circ}$
b) $y=\sin (x-45)^{\circ}$

1) Let $f(x)=3 x^{2}+9 \& g(x)=2 x-1$ find:
a) $f(g(x))$
b) $g(f(x))$
c) $g(g(x))$
$=3(2 x-1)^{2}+9$
$=2\left(3 x^{2}+9\right)-1$
$=2(2 x-1)-1$
$=3\left(4 x^{2}-4 x+1\right)+9=6 x^{2}+18-1$
$=4 x-2-1$
$=12 x^{2}-12 x+3+9=6 x^{2}+17$
$=4 x-3$
$=12 x^{2}-12 x+12$
2) Let $k(x)=\frac{x}{1-x} \quad$ find $k^{-1}(x)$

$$
\begin{gathered}
y=\frac{x}{1-x} \\
y(1-x)=x \\
y-y x=x \\
x+y x=y \\
x(1+y)=y \\
x=\frac{y}{1+y} \\
h^{-1}(x)=\frac{x}{1+x}
\end{gathered}
$$

$y=2 f(x) \quad y=k f(x) \quad y=\frac{1}{2} f(x)$.

$y=-f(x)$ is obtained by reflecting $y=f(x)$: in the x - axis

Example 9: Part of the graph of $y=f(x)$ is shown. On separate diagrams, sketch:
a) $y=f(-x)+2$
b) $y=-\frac{1}{2} f(x+1)$

Example 1: A sequence is defined by the recurrence relation $\mathrm{U}_{\mathrm{n}+1}=3 \mathrm{U}_{\mathrm{n}}+2, \mathrm{U}_{0}=4$.

Find the value of U_{4}.

Example 2: A sequence is defined by the recurrence relation $U_{n}=4 U_{n-1}-3$, where $U_{0}=a$.

Find an expression for U_{2} in terms of a .

Finding a Formula

Recurrence relations can be used to describe situations seen in real life where a quantity changes by the same percentage at regular intervals. The first thing to do in most cases is find a formula to describe the situation.
Example: Jennifer puts $£ 5000$ into a high-interest savings account which pays $7.5 \% \mathrm{p} / \mathrm{a}$. Find a recurrence relation for the amount of money in the savings account.

Solution: Starting amount $=£ 5000$
After 1 year: amount = starting amount $+7.5 \%$ (i.e. 107.5% of starting amount)
$=1.075 \times$ starting amount
Recurrence relation is: $U_{n+1}=1.075 U_{n} \quad\left(U_{0}=5000\right)$

Example 3: Find a recurrence relation to describe:

a) The amount left to pay on a loan of $£ 10000$, with interest charged at 1.5% per month and fixed volume 750,000 litres if 0.05% per day is lost to monthly payments of $£ 250$. vevaporation, but 350 litres extra is added daily

Section 2 - Recurrence Relations.

Additional Example 2.1.1
The value of a car depreciates by 5% per annum. Its value at the beginning of 2009 was $£ 24,000$.
a) Find a recurrence relation for the value of the car.

$$
U_{n+1}=0.95 U_{n} \quad U_{n}=24000
$$

b) Calculate the expected value of the car at the beginning of 2013
$U_{1}=0.95 \times 24000$
$U_{1}=22800$
$U_{2}=0.95 \times 22800$
$v_{2}=21660$
$v_{3}=0.95 \times 21660$
$v_{3}=20577$
$U_{4}=0.95 \times 20577$
$U_{4}=19,548 \cdot 15$.
\therefore At lle beginns of 2013
car is walh 119548.15

Section 2 - Recurrence Relations.

Additional Example 2.1.2
When a particular drug is given to a patient, 40% of it disappears from the body after each hour. 100 mg of the drug is given to the patient at the start of treatment and 75 mg after each hour.
a) Write a recurrence relation for this situation.
b) How much drug will be in the patient's body after 3 hours?
a) $U_{n+1}=0.6 U_{n}+75 U_{0}=100$.
b) $\quad U_{1}=c-6 \times 100+75$
$u_{1}=135$
$U_{2}=0.6 \times 135+75$
A (le 3 hes
$U_{2}=156$
$v_{3}=c .6 \times 156+75$
$U_{3}=168-6$

Example 4: Bill puts lottery winnings of $£ 120000$ in a bank account which pays 5% interest p/a. After a year, he decides to spend $£ 20000$ per year from the money in the account.
a) Find a recurrence relation to describe the amount of money left each year.
b) How much money will there be in the account after five years?
c) After how many years will Bill's money run out?

The Straight Line

Revision from National 5

The graph of $y=m x+c$ is a straight line, where m is the gradient and c is the y-intercept.
Gradient is a measure of the steepness of a line. The gradient of the line joining points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ is given by:

Example 1: Find:
a) the gradient and y-intercept of the line
$y=2 x+5$ $M=2, C=5$ $(-2,4)$ and Q (3, -1)
Q (3, -1)
$x_{1} y_{1} M=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$M=\frac{4-(-1)}{-2-3}$
$M=$ $\frac{5}{-5}$
$M=-1$
b) the equation of the line with gradient -4 and y -intercept $(0,-2)$

$$
y=-406-2
$$

d) the gradient of the line $3 y+4 x-11=0$
$y=m x+C$
$3 y=-4 x+11$
$y=\frac{-4}{3} x+\frac{11}{3}$
$M=\frac{-4}{3}$

Points $\mathrm{A}(\mathrm{a}, \mathrm{b})$ and $\mathrm{P}(\mathrm{x}, \mathrm{y})$ both lie on a straight line.
The gradient of the line $\mathrm{m}=\frac{y-\mathrm{b}}{x-a}$. Rearranging this gives:

NOTE: when you are asked to find the equation of a straight line, you should always expand the brackets and simplify as far as you can. If the question doesn't ask for a specific form then just leave it in any simplified form you want.

Example 2: Find the equations of the lines: a) through $(4,5)$ with $m=2$

$$
\begin{aligned}
& 5 \text { 5) with } m=2 \\
& y-b=m(x-a) \\
& y-5=2(x-4) \\
& y-5=2 x-8 \\
& y=2 x-3 .
\end{aligned}
$$

$x_{1} y_{1} \quad x_{2} y_{2}$
$\begin{aligned} y-b & =m(x-a) \\ & \end{aligned}$

$$
0 x=1 .
$$

$$
x-2 y+4=0 \text { and passing through the point (2, }
$$

$$
\begin{aligned}
& 2 y=x+4 \\
& y=\frac{1}{2} x+2 \quad M=\frac{1}{2} \\
& y-b=m(x-a) \\
& y+3=\frac{1}{2}(x-2) \\
& y+3=\frac{1}{2} x-1
\end{aligned}
$$

$$
y=\frac{1}{2} x-6 .
$$

The Angle with the x -axis
The Gysadiagtlof+alline@peralso be described as the angle it makes with the positive direction of the x-axis.
As the y-difference is OPPOSITE the angle and the x-difference is ADJACENT to it, we get:

$$
\mathbf{m}_{\mathbf{A B}}=\boldsymbol{\operatorname { t a n }} \theta
$$

(where θ is measured CLOCKWISE from the x -axis)

Collinearity

If three (or more) points lie on the same line, they are said to be collinear.

$$
\begin{aligned}
& \text { Example 6: Prove that the points } D(-1,5), E(0,2) \text { and } F(4,-10) \text { are collinear } \\
& M_{C L}=-\frac{10-2}{4-0} \quad \therefore \text { Since MDC }=M_{C L} \\
& \frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad M_{C}=\frac{-10-2}{4-0} \\
& =5-2 \\
& =\frac{-12}{4} \\
& \text { \& C-is a coma } \\
& \text { pant } \\
& \text { O,C \& Fare } \\
& \text { calinear }
\end{aligned}
$$

Perpendicular Lines
If two lines are perpendicular to each other (i.e. they meet at 90°), then \square $m_{1} \times m_{2}=-1$

Example 7: Show whether these pairs of lines are perpendicular:

>	When asked to find the gradient of a line	$\begin{array}{l}\text { 1. }\end{array}$ Find the gradient of the given line
2.	Flip it upside down	
3.	Change the sign (e.g. negative to positive)	

Example 8: Find the gradients of the lines perpendicular to:

$$
\begin{aligned}
& y-b=4(x-a) \\
& y-5=4(x+2) \\
& y-5=4 x+8 \\
& y=4 x+13
\end{aligned}
$$

The midpoint of a line lies exactly halfway along it. To find the coordinates of a midpoint, find halfway between the x - and y-coordinates of the points at each end of the line (see diagram).

The x - coordinate of M is halfway between -2 and 8 , and its y-coordinate is halfway between 5 and -3 .

In general, if M is the midpoint of $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$:

The perpendicular bisector of a line passes through its midpoint at 90°.

Lines Inside Triangles:
Medians, Altitudes \& Perpendicular Bisectors

In a triangle, a line joining a corner to the midpoint of the opposite side is called a median.

The medians are concurren (i.e. meet at the same point) at the centroid, which divides each median in the ratio $2: 1$ The median always divides the area of a triangle in half. A solid triangle of uniform density will balance on the centroid.

A line through a corner which is perpendicular to the opposit side is called an altitude.

The altitudes are concurrent at the orthocentre. The orthocentre isn't alway located inside the triangle e.g. if the triangle is obtuse.
90° to the midpoint is alled a perpendicular bisector

The perpendicular bisectors are concurrent at the circumcentre. The circumcentre is the centre o the circle touched by the vertices of the triangle.

For all triangles, the centroid, orthocentre and circumcentre are collinear.

1) $A \& B$ are the points $(4,6)$ and $(10,8)$ respectively.

Find the equation of the perpendicular bisector of $A B$

$$
M_{1}=-3
$$

$$
\begin{array}{ll}
y-b=m(x-a) & c 0^{2}=4^{2}+3^{2} \\
y-7=-3(x-7) & c^{2}=16+9
\end{array}
$$

$$
\begin{array}{ll}
y-7=-3(x-7) & c 0^{2}=16+9 \\
y &
\end{array}
$$

$$
\begin{array}{rl}
y-7 & =-3 x+21 \\
y & c 0^{2}=25 \\
4 & =-2 x+10
\end{array} c 0=\sqrt{25}
$$

$$
y=-3 x+28
$$

Example 11: A triangle has vertices $P(0,2), Q(4,4)$ and $R(8,-6)$.
a) Find the equation of the median through P.
$M_{Q R}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
$=\left(\frac{4+8}{2}, \frac{4+(-6)}{2}\right)$
$=(6,-1)$
$M_{P T}=\frac{-1-2}{6-0} \quad \begin{aligned} & y-b=m(x-a) \\ & \frac{y-2}{3}\end{aligned}$
$=\frac{-3}{6} \quad y-2=-\frac{1}{2} x$
$y=\frac{-1}{2} x+2$

To find the equation of a median:

- Find the midpoint of the side opposite the given point
- Find the gradient of the line joining the given point and the midpoint
Substitute into $y-b=m(x-a)$
b) Find the equation of the altitude through R
$M_{P Q}=y_{2}-y_{1}$

$=\frac{4-2}{x_{2}-x_{1}}$	$y-b=m(x-a)$
$=\frac{2-0}{4}$	$y-(-6)=-2(x-8)$
$=\frac{1}{2}$	$y+6=-2 x+16$
	$y=-2 x+10$

To find the equation of an altitude:

- Find the gradient of the side opposite the given point
- Find the perpendicular gradient (flip and make negative)
Substitute into $y-b=m(x-a)$

The distance between any two points $A\left(x_{1}, y_{1}\right)$ and B ($\mathrm{x}_{2}, \mathrm{y}_{2}$) can be found easily by Pythagoras' Theorem.

If d is the distance between A and B , then:

Example 12: Calculate the distance between:
Example 13: A is the point $(2,-1), \mathrm{B}$ is $(5,-2)$ and
a) $\mathrm{A}(-4,4)$ and $\mathrm{B}(2,-4)$
$d=\sqrt{\left(x_{2}-y_{2}\right.}$
$d=\sqrt{(2-(-4))^{2}+(-4-4)^{2}}$
$d=\sqrt{36+64}$
$d=\sqrt{100}$

$d=\sqrt{(-2-11)^{2}+(-5-2)^{2}}$
$d=\sqrt{169+49}$
$d=\sqrt{218}$

BC
$d=\sqrt{\left(y_{2} \cdot-x_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}$
$=\sqrt{(-2-4)^{2}+(5-7)^{2}}$
$=\sqrt{36+4}$
$=\sqrt{40}=2 \sqrt{10}$
$2 A B$
$d=2 \sqrt{(-1-(-2))^{2}+(2-5)^{2}}$
$d=2 \sqrt{1+9}$
$d=2 \sqrt{10}$.
Sinre $B C=2 \sqrt{ } 10 \$ 2 A B=2 \sqrt{ } 0$
$B C=2 A B$

Past Paper Example 1: The vertices of triangle ABC
are $A(7,9), B(-3,-1)$ and $C(5,-5)$ as shown:
The broken line represents the perpendicular
bisector of BC
a) Show that the equation of the perpendicular
bisector of $B C$ is $y=2 x-5$

c) Find the co-ordinates of the point of intersection of the perpendicular bisector of BC and the median
from C.

$$
\begin{gathered}
y=-3 x+10 \\
y=2 x-5 \\
y=y
\end{gathered}
$$

$$
-3 x+10=2 x-5
$$

$$
-5 x=-15
$$

$$
x=3
$$

When $x=3$

$$
\begin{aligned}
& y=2(3)-5 \\
& y=1 \quad \therefore P a C(3,1)
\end{aligned}
$$

Past Paper Example 2:
The line GH makes an angle of 30° with the y-axis as shown in the diagram opposite.

What is the gradient of GH?

$$
\begin{aligned}
& m=\tan \theta \\
& m=\tan 60^{\circ} \\
& m=\sqrt{3} \\
& m=1.7
\end{aligned}
$$

Vectors

Revision from National 5

A measurement which only describes the magnitude (i.e. size) of the object is called a scalar quantity, e.g. Glasgow is 11 miles from Airdrie. A vector is a quantity with magnitude and direction, e.g. Glasgow is 11 miles from Airdrie on a bearing of 270°

The position of a point in 3-D space can be described if we add a third coordinate to indicate height.

E. iple 1: OABC DEFG is a cuboid, where F is the point $(5,4,3)$. Write down the coordinates of the points:
a) A
b) D
d) M, the centre of face ABFE

The rules of vectors can be used in either 2 or 3 dimensions:

The magnitude of a vector is its length, which can be determined by Pythagoras' Theorem. The magnitude of \underline{a} is written as $|\underline{a}|$.

Example 2: Determine $|\underline{a}|$ and $|\underline{b}|$ in the
If $\underline{u}=\binom{a}{b}$, then $|\underline{u}|=\sqrt{a^{2}+b^{2}}$
If $\underline{\underline{u}}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$, then $|\underline{u}|=\sqrt{a^{2}+b^{2}+c^{2}}$

Two (or more) vectors can be added together to produce a resultant vector.

In general:
$\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$ and
If $\underline{u}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ and $\underline{v}=\left(\begin{array}{l}d \\ e \\ f\end{array}\right)$, then $\underline{u}+\underline{v}=\left(\begin{array}{l}a+d \\ b+e \\ c+f\end{array}\right)$

Example 4: Find values of x and y such that
$\binom{x}{4}+\binom{12}{y}=\binom{9}{-2}$
Example 3: Find $p+q$ when $p=\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right)$ and $q=\left(\begin{array}{c}7 \\ -7 \\ 4\end{array}\right)$.

Subtraction of vectors can be considered as going along the second vector in the wrong direction

$$
\text { If } \underline{u}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \text { and } \underline{v}=\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right) \text {, then } \underline{u}-\underline{v}=\left(\begin{array}{l}
a-d \\
b-e \\
c-f
\end{array}\right)
$$

Multiplication by a Scalar Quantity
If we go along \underline{a} twice, the resultant vector is $\underline{a}+\underline{a}=2 \underline{a}$. As we

Example 5: If $\underline{b}=\left(\begin{array}{c}4 \\ 0 \\ -2\end{array}\right)$ and $\underline{c}=\left(\begin{array}{c}-3 \\ -5 \\ 5\end{array}\right)$, find:
a) $3 \underline{b}$
b) $2 \underline{b}+\underline{c}$
c) $\underline{c}-\frac{1}{2} \underline{b}$

Higher Maths Notes
Example 7: P is the point $(3,7,-1) . \overrightarrow{\mathrm{PQ}}$ has components $\left(\begin{array}{c}-4 \\ 9 \\ -3\end{array}\right)$.
Find the coordinates of Q .

$$
\begin{aligned}
& \overrightarrow{P G}=\left(\begin{array}{l}
-4 \\
-3 \\
-3
\end{array}\right) \\
& \text { 为 } \\
& P_{Q}=\underline{q}-\underline{p} \\
& \binom{-4}{3}=9-9
\end{aligned}
$$

$$
\begin{aligned}
& \underline{q}=\left(\begin{array}{c}
-7 \\
2 \\
-2
\end{array}\right) \quad Q=(-7,2,-2)
\end{aligned}
$$

A unit vector is a vector with magnitude $=1$.
Example 8: Find the components of the unit vector parallel to $\underline{h}=\left(\begin{array}{c}2 \\ -3 \\ 6\end{array}\right)$
$|h|=\sqrt{2^{2}+(-3)^{2}+6^{2}}$
$=\sqrt{4+9+36}$
$=\sqrt{4 a}$

- 7

To find the components of a unit vector:

- Find the magnitude of the given vector
- Divide components by the magnitude
$u=\left(\begin{array}{l}\frac{2}{5} \\ -3 / 7 \\ 6 / 7\end{array}\right)$

Example 9: Points F, G and H have coordinates $(6,1,5), G(4,4,4)$, and $(-2,13,1)$ respectively. Show that F, G and H are collinear, and find the ratio in which G divides FH

```
\(F G=g-\epsilon\)
\(=\left(\begin{array}{l}4 \\ 4 \\ 2\end{array}\right)-\left(\begin{array}{l}6 \\ 5 \\ 5\end{array}\right)\)
\[
=\left(\begin{array}{c}
-2 \\
-2 \\
-1
\end{array}\right)
\]
\(\therefore\) Since \(\overrightarrow{C H}=3 \overrightarrow{F G} \not C\) Cis common pant. F, G \$ Hare collinear \& parallel.
```


P divides $A B$ in the ratio 2:3. By examining the diagram, we can find a formula for \underline{p} (i.e. $O P$).

$$
\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}
$$

In general, if P divides $A B$ in the ratio $m: n$, then:

$$
p=\frac{1}{n+m}(n \underline{a}+m \underline{b})
$$

Example 11: A is the point $(3,-1,2)$ and B is the point $(7,-5,14)$. Find the coordinates of P such that P divides $A B$ in the ratio 1:3.

$$
\text { Vectors in } 3 \mathrm{D} \text { can also be described in terms of the three unit vectors } \underline{i}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \dot{i}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \text {, and } \underline{k}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \text {, }
$$

$$
\text { which are parallel to the } x, y \text {, and } z \text { axes respectively. }
$$

Example 12: $\underline{u}=3 \underline{i}+2 \dot{j}-6 \underline{k}, \underline{v}=-\underline{i}+5 \dot{j}$.
a) Express $\underline{u}+\underline{v}$ in component form
b) Find $|\underline{u}+\underline{v}|$

The scalar product is the result of a type of multiplication of two vectors to give a scalar quantity. (i.e. a number with no directional component)

For vectors \underline{a} and \underline{b}, the scalar product (or dot product) is given as:
$a . b=|a| b \mid \cos \theta \quad$ Note: - a and b point away from the vertex

Example 13: Find the scalar product in each case below, where $|\underline{a}|=6$ and $|\underline{b}|=10$.
a)
b)

c)

We can use the formula below to find the scalar product when we have been given the component forms of the two vectors but not the angle in between them
If $\underline{a}=\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ and $\underline{b}=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$, then $\underline{a} \cdot \underline{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$

Example 14: $\underline{a}=\underline{i}+2 \dot{j}+2 \underline{k}$, and $\underline{b}=2 \underline{i}+3 \underline{j}-6 \underline{k}$. Evaluate \underline{a}. b

Perpendicular Vectors	
A special case of the scalar product occurs when we have perpendicular vectors i.e. when $\theta=90^{\circ}$:	$\begin{aligned} a . b & =\|a\|\|b\| \cos 90^{\circ} \\ & =\|a\|\|b\| \times 0 \\ & =0 \end{aligned}$
If $a . b=0$, then a and b are perpendicular	
Example 16: P, Q and R are the points ($1,1,2$), $(-1,-1,0)$ and ($3,-4,-1$) respectively. Find the components of $\overrightarrow{Q P}$ and $\overrightarrow{Q R}$, and hence show that the vectors are perpendicular.	

Higher Maths Notes

$$
\begin{aligned}
& a \underline{i}+b \underline{j}+\underline{k} 13 \underline{i}-4 \underline{j}+6 \underline{k} \\
& -5 \underline{i}+2 \underline{k}+4 \underline{j} \\
& \underline{u}=\left(\begin{array}{l}
a \\
b \\
1
\end{array}\right) \quad \underline{u} \underline{v}=3 a-4 b+6 \\
& \underline{v}=\left(\begin{array}{c}
3 \\
-4 \\
6
\end{array}\right) \\
& \underline{w}=\left(\begin{array}{c}
-5 \\
2 \\
2 \\
4
\end{array}\right) \quad \underline{u} \cdot \underline{w}=-5 a+4 b+6=0 . \\
& -5 a+2 b+4=0 \\
& 3 a-4 b=-6 \\
& -5 a+2 b=-4(x 2) \\
& \begin{aligned}
3 a-4 b & =-6 \quad \text { Add! } \\
-10 a+4 b & =-8
\end{aligned} \quad \\
& -7 a=-14 \\
& a=2 \\
& \text { Wen } a=2,3(2)-4 b+6=0 \\
& \therefore a=2 \\
& b=3 \text {. } \\
& 6-4 b+6=c \\
& 4 b=12 \\
& b=3 \text {. }
\end{aligned}
$$

We can rearrange the angle form of the scalar product to give $\cos q=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}$

Example 17: $\underline{a}=\underline{i}+2 j+2 \underline{k}$ and $\underline{b}=2 \underline{j}+3 \underline{j}$. Find the angle between \underline{a} and \underline{b}.

Higher Maths Notes
Example 18: A is the point $(1,2,3), B(6,5,4)$, and $C(-1,-2,-6)$. Calculate $\angle A B C$.

$$
\begin{aligned}
& \overrightarrow{B A}=\underline{a}-\underline{b} \\
& =\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)-\left(\begin{array}{l}
6 \\
5 \\
4
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\overrightarrow{B C} & =c-b \\
& =\left(\begin{array}{l}
-1 \\
-2 \\
-6
\end{array}\right)-\left(\begin{array}{l}
6 \\
5 \\
4
\end{array}\right)
\end{aligned} \\
& \begin{array}{l}
=\left(\begin{array}{c}
-1 \\
-2 \\
-6
\end{array}\right)-\left(\begin{array}{c}
6 \\
5 \\
4
\end{array}\right) \\
=\left(\begin{array}{c}
-7 \\
-2 \\
-10
\end{array}\right), ~
\end{array} \\
& \cos \theta=\frac{a \cdot b}{|9| 1 b \mid} \\
& \begin{array}{c}
\theta=\cos ^{-1}(0.79)= \\
=\frac{37.8^{\circ}}{},
\end{array} \\
& 0=378^{\circ}
\end{aligned}
$$

 ide length of 6 units. The coordinates of A and D are $(6,0,0)$ and $(3,3,8)$. C lies on the y-axis.
a) Write down the coordinates of B
b) Determine the components of $\overrightarrow{D A}$ and $\overrightarrow{D B}$

c) Calculate the size of $\angle \mathrm{ADB}$.
a) Show that the points $A(-7,-8,1), T(3,2,5)$ and $B(18,17,11)$ are collinear and state the ratio in which T divides $A B$. $\overrightarrow{A T}=\underline{t}-\underline{a}$
$=\left(\begin{array}{l}3 \\ 8 \\ 5\end{array}\right)^{-} \cdot\left(\begin{array}{c}-7 \\ -8 \\ 1\end{array}\right)$
$=\left(\begin{array}{ll}1 & 0 \\ 10 \\ 4\end{array}\right)$
$\begin{aligned} T 8 & =6-6 \\ & =\left(\begin{array}{l}15 \\ 12 \\ 11 \\ 15 \\ 15 \\ 5\end{array}\right)-\left(\begin{array}{l}3 \\ 2 \\ 5\end{array}\right)\end{aligned}$

\therefore Since $\overrightarrow{T B}=\frac{3}{2} \overrightarrow{A T}$ a $T i s$ a coma pone.
$A, T \$ B$ ae collinear $\$$ parallel.

$$
1: \frac{3}{2} \times 2
$$

$$
2: 3
$$

b) The point C lies on the x-axis.

If TB and TC are perpendicular find the coordinates of C C $(x, 0,0)$
$\overrightarrow{\text { TO. TC }}$

$=15(x-3)+15(-2)+6(-5)$
$=15 x-45-30-30$.
$=15 x-105$

$$
\begin{gathered}
15 x-105=0 \\
15 x=105 \\
x=7 \\
c(7,0,0)
\end{gathered}
$$

$\underline{a}, \underline{b}$ and \underline{c} respectively. Find the value of $\underline{a}(\underline{b}+\underline{c})$
$=\underline{a} \cdot \underline{b}+\underline{a} \cdot \underline{c}$
$=2+(-2)$
$=0$.

Calculus 1: Differentiation

In the chapter on straight lines, we saw that the gradient of a line is a measure of how quickly it increases (or decreases) at a constant rate.

This is easy to see for linear functions, but what about quadratic, cubic and higher functions? As these functions produce curved graphs, they do not increase or decrease at a constant rate.

For a function $f(x)$, the rate of change at any point on the function can be found by measurin the gradient of a tangent to the curve at that
point.

The rate of change at any point of a function is called the derived function or the derivative.
Finding the rate of change of a function at a given point is part of a branch of maths known as calculus.
or function $f(x)$ or the graph $y=f(x)$, the derivative is written as:
$f^{\prime}(x)$ ("f dash x ") OR

Derivative $=$ Rate of Change of the Function $=$ Gradient of the Tangent to the Curve

The Derivative of $f(x)=a x^{n}$

Example 1: Find the derivative of $f(x)=x^{2} \quad$ To find the derivative of a function:

$$
\begin{aligned}
& \text { 1. Make sure it's written in the form } y=a x^{n} \\
& \text { 2. Multiply by the power } \\
& \text { 3. Decrease the power by one }
\end{aligned}
$$

γ

Example 2: $f(x)=2 x^{3}$. Find $f^{\prime}(x)$.

This means:
At $x=1$, the gradient of the tangent to $2 x^{3}=$
At $x=-2$, the gradient of the tangent to $2 x^{3}=$

Example 3: Differentiate the following expressions:
a) $f(x)=6 x^{10}$

d) $k=-9 x^{-9}$

$$
\begin{aligned}
& \text { Example 4: Write with negative indices: } \mid \text { Example 5: Write in index form: } \\
& \begin{array}{lll|lll}
\text { a) } \frac{2}{x^{2}} & \text { b) } \frac{1}{4 x^{5}} & \text { c) } \frac{3}{5 x^{\prime}} & \text { a) } \sqrt{x} & \text { b) } \sqrt[3]{x^{2}} \\
2 x^{-2} & \frac{1}{4} x^{-5} & \frac{3}{3} x^{-1} & =x^{2 / 3} & =x^{3} & =\frac{2}{3 \sqrt{x^{7}}} \\
-\frac{2}{3}
\end{array} \\
& \frac{1}{4} \times \frac{1}{x^{5}} \\
& \frac{1}{4} \times \frac{x^{-5}}{1} \frac{\frac{1 x^{-5}}{4}}{\frac{1}{4} x^{-5}}
\end{aligned}
$$

Example 6: For each function, find the derivative.

Example 7: Find the rate of change of each function:

b) $y=\frac{(x+3)^{2}}{x^{2 / 3}}$
c) $f(x)=\frac{x^{5}-3 x}{2 x^{3}}$
$\begin{aligned} & y=\frac{x^{2}+6 x+9}{x^{2 / 3}} \\ & y=\frac{x^{2}}{x^{2 / 3}}+\frac{6 x^{\prime}}{x^{2 / 3}}+\frac{9}{x^{2 / 3}} \\ & y=x^{\frac{4}{3}}+6 x^{1 / 3}+9 x^{-2 / 3} \\ & \frac{d y}{d x}=\frac{4}{3} x^{\frac{1}{3}}+\frac{6}{3} x^{-\frac{2}{3}}-6 x^{-\frac{5}{3}} \\ &=\frac{4}{3} \sqrt{3} \sqrt{x}+\frac{x^{5}}{3 x^{3}}-\frac{3 x}{2 x^{3}} \\ & f(x)=\frac{1}{2}-\frac{6}{3 \sqrt{x}} x^{2}-\frac{3}{2} x^{-2} \\ &=x+3 x^{-3}\end{aligned}$
$1-\frac{2}{3}=\frac{1}{3}$

Points to note:
 - Number terms disappear (e.g. if $f(x)=5, f^{\prime}(x)=0$)
 - Give your answer back in the same form as the question

Equation of a Tangent to a Curve
Example 8: Find the equation of the tangent to the curve $y=x^{2}-2 x-15$ when $x=4$.
To find the equation of a tangent to a curve:

- Find the point of contact (sub the value of x into the equation to find y)
- Find $\frac{d y}{d x}$
- Find m by substituting x into $\frac{d y}{d x}$
- Use $y-b=m(x-a)$

Example 9:

a) Find the gradient of the tangent to the curve b) Find the other point on the curve where the $y=x^{3}-2 x^{2}$ at the point where $x=\frac{7}{3}$. tangent has the same gradient.

Example 10: Find the point of contact of the tangent to the curve with equation $y=x^{2}+7 x+3$ when the gradient of the tangent is 9 .

Any point on a curve where the tangent is horizontal (i.e. the gradient or $\frac{d y}{d x}=0$) is commonly known as
a stationary point. There are four types of stationary point:

Minimum Turning Point
 Maximum
Turning Point

Rising

Falling Falling
Point of Inflection

To locate the position of stationary points, we find the derivative, make it equal zero, and solve for x. To determine their type (or nature), we must use a nature table

Example 11: Find the stationary points of the curve $y=2 x^{3}-12 x^{2}+18 x$ and determine their nature.
$\frac{d y}{d x}=6 x^{2}-24 x+18$.
SP's occur when $\frac{d y}{d x}=0$

$$
\begin{aligned}
& 6 x^{2}-21 x+18=0 . \\
& 6\left(x^{2}-4 x+3\right)=0 \quad x-3
\end{aligned}
$$

$$
6(x-3)(x-1)=0
$$

$$
x=3, x=1
$$

$$
\text { when } x=0
$$

$$
\begin{aligned}
\frac{d y}{d x} & =6(0)^{2}-24(0)+18 \\
& =18
\end{aligned}
$$

$$
\text { When } x=2
$$

$$
\frac{d y}{d x}=6(2)^{2}-24(2)+18
$$

$$
\text { When } \begin{aligned}
& x=3 \\
& y=2(3)^{3}-12(3)^{2}+18(3) \\
& y=0
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =6(2) \\
& =24-48+18
\end{aligned}
$$

$$
=-6
$$

When $x=4$

$$
\frac{d y}{d x}=6(4)^{2}-2 u(u)+18
$$

$$
\text { When } \begin{aligned}
x= & 1 \\
y & =2(1)^{3}-12(1)^{2}+18(1) \\
y & =8
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{MaxTP} \odot(1,8) \\
& \operatorname{MinTP} @(3,0)
\end{aligned}
$$

If a function is always increasing (or decreasing), it is said to be strictly increasing (or decreasing).

Example 14: Find the intervals in which the function $f(x)=2 x^{3}-6 x^{2}+5$ is increasing and decreasing.

Sometimes, we may only be interested in a small section of the curve of a function. To find the maximum and minimum values of a function in a given interval, we find stationary points as normal, but we also need to consider the value of the function at the ends of the interval.
Example 16: Find the greatest and least values of $y=x^{3}-12 x$ in the interval $-3 \leq x \leq 1$

Graph of the Derived Function

From the graph of $y=f(x)$, we can obtain the graph of $y=f^{\prime}(x)$ by considering its stationary points. On the graph of $y=f^{\prime}(x)$, the y-coordinate comes from the derivative of $y=f(x)$.

1. Draw a set of axes directly under a copy of $y=$ $f(x)$.
2. Locate the stationary points.
3. At SP's, $f^{\prime}(x)=0$, so the y coordinate of $f^{\prime}(x)=0$ on the new graph.
4. Where $f(x)$ is increasing, $f^{\prime}(x)$ is above the \boldsymbol{x}-axis.
5. Where $f(x)$ is decreasing, $f^{\prime}(x)$ is below the x axis
6. Draw a smooth curve which fits this information.

Example 17: For the graphs below. Sketch the corresponding derived graphs of $y=f^{\prime}(x)$

Let $f(x)=\sin x$ and $g(x)=\cos x$. The graphs of $y=f(x)$ and $y=g(x)$ are shown below, where the x-axis is measured in radians. Tangents to each curve have been drawn at the following points:

On $y=\sin x$, the tangent at $x=0$ has $m=1$, and the tangent at $x=\pi$ has $m=-1$. On $y=\cos x$, the tangent at $x=\frac{\pi}{2}$ has $m=-1$, and the tangent at $x=\frac{3 \pi}{2}$ has $m=1$.

Draw the graphs of $y=f^{\prime}(x)$ and $y=g^{\prime}(x)$ below.

The graphs of the derived functions therefore show that:

$$
\text { If } y=\sin x, \frac{d y}{d x}=\cos x \quad \text { If } y=\cos x, \frac{d y}{d x}=-\sin x .
$$

Example 18: Find the derivative in each case:

a) $y=4 \sin x$	b) $f(x)=2 \cos x$	c) $g(x)=-\frac{1}{2} \cos x$	d) $h=-5 \sin k$
$\frac{d y}{d x}=4 \cos x$	$f^{\prime}(x)=-2 \sin x$	$g^{\prime}(x)=\frac{1}{2} \sin x$	$\frac{d h}{d h}=-50 \operatorname{sh}$

Past Paper Example 2: Find the equation of the two tangents to the curve $y=2 x^{3}-3 x^{2}-12 x+20$ which are parallel to the line $48 x-2 y=5$.

$$
\begin{aligned}
2 y & =48 x+5 \\
y & =24 x+\frac{5}{2}
\end{aligned}
$$

$m=24$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{6 x^{2}-6 x-12}{6 x^{2}-6 x-12=24} \\
& 6 x^{2}-6 x-36=0 \\
& 6\left(x^{2}-x-6\right)=0 x^{-3} \\
& 6(x-3)(x+2)=0
\end{aligned}
$$

$$
\begin{gathered}
x=3, x=-2 \\
\text { When } x=3, y=2(3)^{3}-3(3)^{2}-12(3)+20
\end{gathered}
$$

$$
\begin{aligned}
& y=54-27-36+20 \\
& y=11
\end{aligned}
$$

$$
y=11
$$

$$
\begin{gathered}
y=11 \quad(3,11) \\
\text { When } x=-2, \quad y=2(-2)^{3}-3(-2)^{2}-12(-2)+20
\end{gathered}
$$

$$
y=-16-12+24+20
$$

$$
y=16
$$

$$
\begin{array}{c|c}
y-b=m(x-a) & y-16=24(x+2) \\
4-16=24 x+48
\end{array}
$$

$$
\begin{array}{l|l}
y-b=m(x-a) & y-16=24(x+2) \\
y-11=24(x-3) & y-16=24 x+48 \\
y-11=26 x-72 & y=24 x+64
\end{array}
$$

Higher Maths Notes
Past Paper Example 3: A function is defined on the domain $0 \leq x \leq 3$ by $f(x)=x^{3}-2 x^{2}-4 x+6$.
Determine the maximum and minimum values of f.

$$
\text { When } x=0, y=0^{3}-2(0)^{2}-4(0)+6
$$

$$
y=6
$$

When $x=3$,

$$
\begin{aligned}
& y=3^{3}-2(3)^{2}-4(3)+6 \\
& y=27-18-12+6
\end{aligned}
$$

$$
y=3
$$

$$
\frac{d y}{d x}=3 x^{2}-4 x-4
$$

$$
\text { Sp's when } \frac{d y}{d x}=0
$$

$$
\begin{aligned}
& 3 x^{2}-4 x-4=0^{3 x+2} \\
& (3 x+2)(x-2)=0^{x-2} \\
& x=\frac{-2}{3}, x=2
\end{aligned}
$$

When $x=2, y=2^{3}-2(2)^{2}-4(2)+6$

$$
\begin{aligned}
& y=8-8-8+6 \\
& y=-2
\end{aligned}
$$

$M_{\text {ax }}$ value $=6$ when $x_{c}=0$
M n Valve $=-2$ when $x=2$.

The Circle

If we draw, suitable to relative axes, a circle, radius r, centred on the origin, then the distance from the centre of any point $P(x, y)$ could be determined to be $d=\sqrt{x^{2}+y^{2}}$

As the shape is a circle, then this distance is equal to the radius. It therefore follows that:

Since $r=\sqrt{x^{2}+y^{2}}$, then $r^{2}=x^{2}+y^{2}$
Therefore,
The equation $x^{2}+y^{2}=r^{2}$ describes a circle with centre $(0,0)$ and radius r

Example 1: Write down the centre and radius of each circle.

a) $x^{2}+y^{2}=64$	b) $x^{2}+y^{2}=361$	c) $x^{2}+y^{2}=\frac{3}{25}$
$(0,0)$	$(0,0)$	$(0,0)$
$r=8$	$r=\sqrt{361}$	$r=\sqrt{\frac{3}{25}} r=\frac{\sqrt{3}}{5}$

Example 2: State where the points $(-2,7),(6,-8)$ and $(5,9)$ lie in relation to the circle $x^{2}+y^{2}=100$.

$(-2,7)$	(6,8)	$(5,9)$
$x^{2}+y^{2}=100$	$x^{2}+y^{2}=100$	$x^{2}+y^{2}=100$
	$6^{2}+(-8)^{2}$	$5^{2}+9=$
$(-2)^{2}+7$ $=4+49$	$=36+64$	
$\begin{aligned} & =4+49 \\ & =53 \end{aligned}$	$=100$	$\begin{aligned} & 25+81 \\ & =10 \% \end{aligned}$
\therefore Snee $53<100$	$[6,-8) \text { (ces a }$	\therefore Snce $106>100$
$(-2,7)$ lies uside	te corde.	$(5,9)$ lues culside
HeCode.		Hearde.

Circles with Centres Not at the Origin
The radius in the above circle is the distance between (x, y) and the origin, i.e. $r=\sqrt{(x-0)^{2}+(y-0)^{2}}$. If we move the centre to the
point (a, b), then $r=\sqrt{(x-a)^{2}+(y-b)^{2}}$.
Squaring both sides, we can now also say that:
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ describes a circle with centre (a, b) and radius r

Example 3: Write down the centre and radius of each circle. a) $(x-1)^{2}+(y+3)^{2}=4 \quad$ b) $(x+9)^{2}+(y-2)^{2}=20$

c) $(x-5)^{2}+y^{2}=400$

Example 5: Points P, Q and R have coordinates $(-10,2),(5,7)$ and $(6,4)$ respectively.

For the circle described in Example 3a, we could expand the brackets and simplify to obtain the equation $x^{2}+y^{2}-2 x+6 y+6=0$, which would also describe a circle with centre $(1,-3)$ and radius 2 .

$$
\begin{array}{rlrl}
\text { For } x^{2}+y^{2}+2 g x+2 f y+c & =0, & \text { Therefore, the circle describec } \\
\left(x^{2}+2 g x\right)+\left(y^{2}+2 f y\right) & =-c \\
\left(x^{2}+2 g x+g^{2}\right)+\left(y^{2}+2 f y+f^{2}\right) & =g^{2}+f^{2}-c
\end{array} \quad \begin{aligned}
x^{2}+y^{2}+2 g x+2 f y+c=0
\end{aligned}
$$

$$
(x+g)^{2}+(y+f)^{2}=\left(g^{2}+f^{2}-c\right)
$$

$$
\begin{gathered}
(x+3)+(y+7)
\end{gathered}
$$ circle with equation $x^{2}+y^{2}-4 x+8 y-5=0$

$$
\begin{aligned}
& \text { Centre }(2,-4) \\
& \text { radius }=\sqrt{4+16-(-5)} \\
&=\sqrt{25} \\
&=5
\end{aligned}
$$

Example 7: State why the equation
$x^{2}+y^{2}-4 x-4 y+15=0$ does not represent a circle

$$
\begin{aligned}
& \text { Centre }(2,2) \\
& r=\sqrt{4+4+(-15)} \\
& =\sqrt{-7} \\
& \text { shcewecont } \sqrt{-v e} .
\end{aligned}
$$

Example 8: State the range of values of c such that the equation $x^{2}+y^{2}-4 x+6 y+c \neq 0$ describes a circle.

$$
\begin{gathered}
\text { Centre }(2,-3) \\
r=\sqrt{4+a-c} \\
r=\sqrt{13-c} \\
13-c>0 \\
-c>-13 \\
c<13
\end{gathered}
$$

Example 9: Find the equation of the circle concentric with $x^{2}+y^{2}+6 x-2 y-54=0$ but with radius half its

$$
\begin{gathered}
(-3,1) \quad r=4 \cdot \\
(x+3)^{2}+(y-1)^{2}=16 \cdot \sqrt{2}=r^{2} \\
(x-a)^{2}+(y-b)^{2}=
\end{gathered}
$$

As with parabolas, there are three possibilities when a line and a circle come into contact, and we can examine the roots of a rearranged quadratic equation to determine which has occurred. However:
We CANNOT make the circle and line equations equal to each other: the line equation must be substituted INTO the circle equation to obtain our quadratic equation!

Example 10: Find the coordinates of the points of intersection of the line $y=2 x-1$ and the circle $x^{2}+y^{2}-2 x-12 y+27=0$.
$x^{2}+(2 x-1)^{2}-2 x-12(2 x-1)+27=0$
$x^{2}+4 x^{2}-4 x+1-2 x-24 x+12+27=0$
$5 x^{2}-30 x+40=0$.
$\begin{array}{ll}5\left(x^{2}-6 x+8\right)=0 & x-4 \\ 5(x-4)(x-2)=0 & \\ 5(x-2, x=2 & y=2(4)-1 \\ \therefore(4,7)(2,3) . & y=7\end{array}$
Example 11: Show that the line $y=3 x+10$ s a tangent to the circle $x^{2}+y^{2}-8 x-4 y-20=0$ and establish the coordinates of the point of contact il when $x=2$

$$
\begin{aligned}
& x^{2}+(3 x+10)^{2}-8 x-4(3 x+10)-20=0 y=2(2)- \\
& x^{2}+9 x^{2}+60 x+100-8 x-12 x-40-20=0=3 \\
& 10 x^{2}+40 x+40=0 \\
& 10\left(x^{2}+4 x+4\right)=0 x^{x^{2}} \\
& 10(x+2)^{2}=0 \\
& \text { Snce equal rock, ineusatogent ta } \\
& \text { the curde } \\
& x=-2 \\
& \text { when } x=-2, y=3(-2)+10 \\
& \therefore P \subset C(-2,4) y=4
\end{aligned}
$$

Example 12: Find the equations of the tangents to the $x^{2}+y^{2}$ circle
$x^{2}+y^{2}=9$ from the point $(0,5)$.

Remember: at the point of contact, the radius and tangent meet at 90° (i.e., they are perpendicular).

Example 13: Find the equation of the tangent to $x^{2}+y^{2}-14 x+6 y-87=0$ at the point $(-2,5)$.

Past Paper Example 1: A circle has centre C $(-2,3)$ and passes through point $P(1,6)$.
a) Find the equation of the circle.
b) $P Q$ is a diameter of the circle. Find the equation of the tangent to this circle at Q .

Past Paper Example 2:
a) Show that the line with equation $y=3-x$ is a tangent to the circle with equation

$$
x^{2}+y^{2}+14 x+4 y-19=0
$$

and state the coordinates of P , the point of contact
b) Relative to a suitable set of coordinate axes, the diagram opposite shows the circle from a) and a second smaller circle with centre C
The line $y=3-x$ is a common tangent at the point P.
The radius of the larger circle is three times the radius of the smaller circle.
Find the equation of the smaller circle.

$$
\begin{aligned}
& \text { Past Paper Example 3: Given that the equation } \\
& \qquad x^{2}+y^{2}-2 p x-4 p y+3 p+2=0 \\
& \text { represents a circle, determine the range of values of } p
\end{aligned}
$$

Past Paper Example 4: Circle P has equation $x^{2}+y^{2}-8 x-10 y+9=0$. Circle Q has centre $(-2,-1)$ and radius $2 \sqrt{2}$.
a) i) Show that the radius of circle P is $4 \sqrt{2}$.
ii) Hence show that circles P and Q touch.
b) Find the equation of the tangent to circle Q at the point $(-4,1)$

Quadratic Functions

Finding the Equation of a Quadratic Function From Its Graph: $\boldsymbol{y}=\boldsymbol{k}(\boldsymbol{x}-\boldsymbol{a})(\boldsymbol{x}-\boldsymbol{b})$

If the graph of a quadratic function has roots at $x=-1$ and $x=5$, a reasonable guess at its equation would be
$y=x^{2}-4 x-5$, i.e. from $y=(x+1)(x-5)$
However, as the diagram shows, there are man parabolas which pass through these points, all of which belong to the family of functions $y=k(x+1)(x-5)$.
To find the equation of the original function, we need the roots and one other point on the curve (to allow us to determine the value of k).

Example 1: State the equation of the graph below in the form $y=a x^{2}+b x+c$.

$$
\begin{aligned}
& \begin{array}{l}
y=k(x-a)(x-b) \\
y=k(x-1)(x-3)
\end{array} \\
& \text { When } x=0 \& y=6 \\
& 6=k(0-1)(0-3) \\
& 6=k(-1)(-3) \\
& 3 k=6 \\
& k=2 \\
& \begin{array}{l}
y=2(x-1)(x-3) \\
y=2\left(x^{2}-4 x+2\right)
\end{array} \\
& y=2 x^{2}-8 x+6 \\
& y=(2 x-2)(x-3) \\
& y=2 x^{2}-2 x-6 x+6 \\
& y=2 x^{2}-8 x+6 \text {. }
\end{aligned}
$$

Completing the Square (Revision)
The diagram shows the graphs of two quadratic functions
If the graph of $y=x^{2}$ is shifted q units to the right, followed by r units up, then the graph of $y=(x-q)^{2}+r$ is obtained.

As the turning point of $y=x^{2}$ is $(0,0)$, it follows that the new curve has a turning point at ($\boldsymbol{q}, \boldsymbol{r}$).
A quadratic equation written as $y=p(x-q)^{2}+r$ is said to be in the completed square form.

Example 2: (i) Write the following in the form $y=(x+q)^{2}+r$ and find the minimum value of y. (ii) Hence state the minimum value of y and the corresponding value of x.
a) $y=x^{2}+6 x+10$
b) $y=x^{2}-3 x+1$

Example 3: Write $y=3 x^{2}+12 x+5$ in the form Example 4: Write $y=5+12 x-x^{2}$ in the form

$$
y=p(x+q)^{2}+r .
$$

$$
\begin{aligned}
\text { example 4. } \\
y=p-(x+q)^{2}
\end{aligned}
$$

$$
y=-x^{2}+12 x+5
$$

$$
\begin{aligned}
& y=-x+12 x+0 \\
& y=-\left(x^{2}-12 x\right)+5
\end{aligned}
$$

$$
\begin{aligned}
& y=-\left(x-(x-6)^{2}+5+36\right. \\
& y=-2
\end{aligned}
$$

$$
y=-(x-6)^{2}+41
$$

$$
y=41-(x-6)^{2}
$$

Example 5:
 a) Write $y=x^{2}-10 x+28$ in the form
 $y=(x+p)^{2}+q$.
 $y=(x-5)^{2}+28-25$
 $y=(x-5)^{2}+3$

b) Hence find the maximum value of $\frac{18}{x^{2}-10 x+28}$

$$
\frac{18}{(x-5)^{2}+3}
$$

When $x=5$

$$
\frac{18}{(5-5)^{2}+3}
$$

$=\frac{18}{3}$
$=6$.
Max value $=6$ When $=5$

Quadratic equations which do not easily factorise can be solved in two ways: (i) completing the square, or (ii) using the quadratic formula. In fact, both methods are essentially the same, as the quadratic formula is obtained by solving $y=a x^{2}+b x+c$ via completing the square.

Example 6: State the exact values of the roots of the equation $2 x^{2}-4 x+1=0$ by:
a) using the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
& a=2 \\
& b=-4 \\
& c=1
\end{aligned}
$$

$$
x C=\frac{-(-1) \pm \sqrt{(-4)^{2}-4 \times 2 \times 1}}{2 \times 2}
$$

$$
x=\frac{4 \pm \sqrt{8}}{4}
$$

$$
x=\frac{4+\sqrt{8}}{4}, \frac{4-\sqrt{8}}{4}
$$

$$
x=1 . \frac{4}{7}, 0.29^{4}
$$

$$
\begin{aligned}
& \text { b) completing the square } \\
& 2\left(x^{2}-2 x\right)+1=0 \\
& 2(x-1)^{2}+1-2=0 \\
& 2(x-1)^{2}-1=0 . \\
& 2(x-1)^{2}=1 \\
& (x-1)^{2}=\frac{1}{2} \\
& x-1= \pm \sqrt{\frac{1}{2}} \\
& x= \pm \frac{1}{\sqrt{2}}+1 \\
& x=\frac{1}{\sqrt{2}}+1,-\frac{1}{\sqrt{2}}+1
\end{aligned}
$$

Higher Maths Notes

Quadratic inequations are easily solved by making a sketch of the equivalent quadratic function, and determining the regions above or below the x-axis.
Example 7: Find the values of x for which:
a) $2 x^{2}-7 x+6>0$
b) $2 x^{2}-7 x+6<0$

$$
\begin{aligned}
& x^{2}-7 x+6 \\
& 2 x^{2}-7 x+6{ }^{2 x} \\
& (2 x-3)(x-2)= \\
& x=\frac{3}{2}, x=2
\end{aligned}
$$

a) $2 x^{2}-7 x+6>0$ $x<\frac{3}{2} 4 x>2$.
b) $\begin{aligned} & \frac{2 x^{2}-7 x+6<0}{\frac{3}{2}<x<2} \quad x>\frac{3}{2} \\ & \frac{3}{2}<(x)<2 \\ & \frac{3}{2}<x<2\end{aligned}$

Roots of Quadratic Equations and The Discriminant (Revision)
For $y=a x^{2}+b x+c, b^{2}-4 a c$ is known as the discriminant.• $b^{2}-4 a c>0$ gives real, unequal roots • $b^{2}-4 a c=0$ gives real, equal roots - $b^{2}-4 a c<0$ gives NO real roots
If $b^{2}-4 a c$ gives a perfect square, the roots are RATIONAL If $b^{2}-4 a c$ does NOT give a perfect square, the roots are IRRATIONAL (i.e. surds)

Example 8: Determine the nature of the roots of the equation $4 x(x-3)=9$ $2 x^{2}+4 x+p=0$ has real roots

To find the points of contact between a line and a curve, we make the curve and line equations equal (i.e. make $y=y$) to obtain a quadratic equation, and solve to find the x-coordinates.
By finding the discriminant of this quadratic equation, we can work out how many points of contact there are between the line and the curve. There are 3 options:

The most common use for this technique is to show that a line is a tangent to a curve
Example 11: Show that the line $y=3 x-13$ is a tangent to the curve $y=x^{2}-7 x+12$, and find the coordinates of the point of contact.

$$
\begin{gathered}
y=y \\
x^{2}-7 x+12=3 x-13 \\
x^{2}-10 x+25=0 . x-5 \\
(x-5)^{2}=0 \\
\therefore \text { Since We hare equalrods, Uneisa togent. } \\
x=5 \\
\text { When } x=5, y=3(5)-13 \\
y=2 \quad \therefore \text { P.C (5.2) }
\end{gathered}
$$

Example 12: Find two values of m such that $y=m x-7$ is a tangent to $y=x^{2}+2 x-3$
$y=y$.

$$
\begin{gathered}
x^{2}+2 x-3=m x-7 \\
x^{2}+2 x-m x-3+7=0 . \\
x^{2}+2 x-m x+4=0 . \\
\text { tongency cocs when } b^{2}-4 a c=0 . \\
x^{2}+x(2-m)+4=0 \\
(2-m)^{2}-4 \times 1 \times 4=0 \\
4-4 m+m^{2}-16=0 \\
m^{2}-4 m-12=0 M-6 \\
(M-6)(m+2)=0 \\
M=6, M=-2
\end{gathered}
$$

Past Paper Example 1: Express $2 x^{2}+12 x+1$ in the form $a(x+b)^{2}+c$.

$$
\begin{aligned}
& 2\left(x^{2}+6 x\right)+1 \\
= & 2(x+3)^{2}+1-18 \\
= & 2(x+3)^{2}-17
\end{aligned}
$$

Past Paper Example 2: Given that $2 x^{2}+p x+p+6=0$ has no real roots, find the range of values for p.

Higher Maths Notes
Past Paper Example 3: Show that the roots of $(k-2) x^{2}-3 k x+2 k=-2 x$ are always real.
Real roots och when $b^{2}-4 a c \geqslant 0$.

$$
\begin{aligned}
& (k-2) x^{2}-3 k x+2 x+2 k=0 \\
& (k-2) x^{2}+x(-3 k+2)+2 k=0 \\
& (2-3 k)^{2}-4(k-2)(2 k) \quad \begin{array}{l}
a=k-2 \\
b=2-3 k
\end{array} \\
& 4-12 k+9 k^{2}-8 k^{2}+16 k \quad c=2 k \\
& k^{2}+4 k+4 k^{2} \\
& (k+2)^{2} \\
& \left.\therefore \text { Snce }(k+2)^{2} \geqslant 0=a^{2}-2 a b+\right)^{2} \\
& \text { foo } a l k, \\
& \text { roots ore always real. }
\end{aligned}
$$

Calculus 2: Integration

The reverse process to differentiation is known as integration.

As it is the opposite of finding the derivative, the function obtained by integration is sometimes called the anti-derivative, but is more commonly known as the integral, and is given the sign \int.

$$
\text { If } f(x)=x^{n} \text {, then } \int x^{n} d x \text { is "the integral of } x^{n} \text { with respect to } x \text { " }
$$

In general:

$$
\int a x^{n} d x=\frac{a x^{n+1}}{n+1}+C \quad(n \neq-1)
$$

1. Write as ax 2. Increase the power by

Example 1: Find (remember " + C"):
a) $\int 2 x d x$

$$
x^{2}+c
$$

b) $\int 4 t^{2} d t$
$=\frac{4 t^{3}}{3}+C$
c) $\int\left(3 x^{5}-4\right) \mathrm{dx}$
$=\frac{3 x^{6}}{6}-4 x+C$
d) $\int \frac{3}{\mathrm{~g}^{4}} \mathrm{dg} \quad(g \neq 0)$
e) $\int 6 \sqrt[5]{p^{3}} d p$
f) $\int \frac{4 y-3}{y^{2 / 3}} d y \quad(y \neq 0)$
$=\int 3 g^{-4} d g$
$\frac{3 g^{-3}}{-3}+C$
$-g^{-3}+C$
$=\frac{-1}{g^{3}}+C$.
$\begin{aligned} & \int 6 p^{3 / 5} d p \\ = & \frac{6 p^{8 / 5}}{8 / 5}+C \\ = & \frac{5}{8} \times 6 p^{8 / 5}+C \\ = & \frac{15}{4} p^{8 / 5}+C \\ = & \frac{15}{4} \sqrt[5]{p^{8}}+C\end{aligned}$
$\int 4 y^{1 / 3}-3 y^{-2 / 3} d y$
$=\frac{4 y^{4 / 3}}{\frac{4}{3}}-\frac{3 y^{1 / 3}}{\frac{1}{3}}+c$
$=3 y^{4 / 3}-9 y^{1 / 3}+c$

A definite integral of a function is the difference between the integrals of $f(x)$ at two values of x Suppose we integrate $f(x)$ and get $F(x)$. Then the integral of $f(x)$ when $x=a$ would be $F(a)$, and the integral when $x=b$ would be $F(b)$.
The definite integral of $f(x)$, with respect to x, between a and b, is written as:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) \quad(\text { where } b>a)
$$

For example, the integral of $f(x)=2 x^{2}-4$ between the values $x=-3$ and $x=5$ is written as
$\int_{-3}^{5}\left(2 x^{2}-4\right) d x$ and reads "the integral from -3 to 5 of $2 x^{2}-4$ with respect to x ".
Note: definite integrals do NOT include the constant of integration

$$
\int_{a}^{b} f(x)=[F(b)+C]-[F(a)+C]=F(b)-F(a)
$$

Example 2: Evaluate $\int_{-1}^{3}(2 x-1) d x$

$$
6-2=4
$$

Example 3: Evaluate $\int_{0}^{2}(p+1)(p-1) d p$

$$
\begin{aligned}
& \int_{0}^{2} p^{2}-1 d p \\
= & {\left[\frac{p^{3}}{3}-p\right]_{0}^{2} } \\
= & {\left[\frac{2^{3}}{3}-2\right]-\left[\frac{0^{3}}{3}-0\right] } \\
= & \frac{8}{3}-2 \\
= & \frac{2}{3}
\end{aligned}
$$

o find a definite integral:

prepare the function for integration
integrate as normal, but write inside square integrate as normal, but write inside
brackets with the limits to the right
brackets with the limits to the right
sub each limit into the integral, and subtract
sub each limit into the integral, and subtract
the integral with the lower limit from the one with the higher limit

Example 4: Evaluate $\int_{1}^{\sqrt{3}}\left(x^{2}-2 x\right) d x \sqrt{3}$

$=\frac{3 \sqrt{3}}{3}-3-\left[-\frac{2}{3}\right]$
$=\frac{203}{3}-3+\frac{2}{3}$
$=\sqrt{3}-3+\frac{2}{3}$
$=\sqrt{3}-\frac{7}{3}$

$$
\begin{gathered}
{\left[\frac{6 x^{2}}{2}+5 x\right]_{-2}^{9}=6 .} \\
{\left[3 x^{2}+5 x\right]_{-2}^{9}=6} \\
{\left[3 g^{2}+5 g\right]-\left[3(-2)^{2}+5(-2)\right]=6} \\
3 g^{2}+5 g-[12-10]=6 \\
3 g^{2}+5 g-8=0 \quad \text { Ex 9L } \\
(3 g+8)(g-1)=0 \\
g=-\frac{8}{3}, g=1 \\
\overline{0_{1 s}}, \therefore g=1
\end{gathered}
$$

Area Between a Curve and the \boldsymbol{x} - axis.		
y		In the diagram opposite, the area of the shaded section can be obtained by finding the area under the graph from 0 to b , and subtracting the area from O to a . The value of each of these areas can be determined by integrating the function and substituting b or a respectively.
		The area enclosed by the curve $y=f(x)$, the lines $y=a, y=b$ and the x-axis is equal to the definite integral of $f(x)$ between a and b
0	$a \quad b \quad x$	i.e. Area $=\int_{a}^{b} f(x) d x$

Example 6: For each graph below,
(i) write down the integrals which describe the shaded regions
(ii) calculate the area of the shaded region
a)

b)

NOTE: Example 6b shows that areas UNDER the x - axis give NEGATIVE values!

Example 7:
a) Evaluate $\int_{-}^{7}(2 x-6) d x$
b) (i) Sketch below the area described by the integral $\int_{-1}^{7}(2 x-6) d x$

The answers for $5 a$ and $5 b$ do not match! This is because the area below the axis and the area above cancel each other out (as in 4b, areas below the x-axis give negative values)

To find the area between a curve and the x -axis:

1. Determine the limits which describe the sections above and below the axis 2. Calculate areas separately
2. Find the total, IGNORING THE NEGATIVE VALUE OF THE SECTION BELOW THE AXIS.

Example 8: Determine the area of the regions bounded by the curve $y=x^{2}-4 x+3$ and the x - and y-axes.

Example 10: Find the area enclosed between the curve $y=x^{3}-x^{2}-5 x$ and the line $y=x$

$$
\begin{gathered}
y=y \\
x^{3}-x^{2}-5 x=x \\
x^{3}-x^{2}-6 x=0 \\
x\left(x^{2}-x-6\right)=0 x+2 \\
x(x-3)(x+2)=0 \\
x=0, x=3, x=-2
\end{gathered}
$$

(A) $\int_{-2}^{0} x^{3}-x^{2}-5 x-x d x$
(B) $\int_{0}^{3} x-\left(x^{3}-x^{2}-5 x\right) d x$
$=\int_{-2}^{0} x^{3}-x^{2}-6 x d x$
$=\int_{0}^{3} x-x^{3}+x^{2}+5 x d x$
$=\left[\frac{x^{4}}{4}-\frac{x^{3}}{3}-\frac{6 x^{2}}{2}\right]_{-2}^{0}$
$=\int_{0}^{3} 6 x-x^{3}+x^{2} d x$
$=[0]-\left[\frac{-2^{4}}{4} \frac{(-2)^{3}}{3}-\frac{6(-2)^{2}}{2}\right]$
$=\left[\frac{6 x^{2}}{2}-\frac{x^{4}}{4}+\frac{x^{3}}{3}\right]_{0}^{3}$
$=0-\left[4+\frac{8}{3}-12\right]$
$=5 \frac{1}{3}$
$=\left[\frac{6 \times 3^{2}}{2}-\frac{3^{4}}{4}+\frac{3^{3}}{3}\right]-[0]$
$=27-\frac{81}{4}+9-0$
$\therefore A_{a}=5 \frac{1}{3}$ units 2
$=15 \frac{3}{4}$
$A(B)=15^{3} / 4 \operatorname{cnita}^{2}$

$$
\begin{aligned}
A_{T} & =5 \frac{1}{3}+15^{3} / 4 \\
& =21 \frac{1}{12} \operatorname{mnic}^{2}
\end{aligned}
$$

Higher Maths Notes
Past Paper Example 1: Evaluate $\int_{1}^{9} \frac{x+1}{\sqrt{x}} d x$

$$
\begin{aligned}
& \int_{1}^{9} \frac{x+1}{x^{1 / 2}} d x \\
= & \int_{1}^{9} \frac{x^{1}}{x^{1 / 2}}+\frac{1}{x^{1 / 2}} d x \\
= & \int_{1}^{9} x^{1 / 2}+x^{-1 / 2} d x \\
= & {\left[\frac{x^{3 / 2}}{3 / 2}+\frac{x^{1 / 2}}{\frac{1}{2}}\right]_{1}^{9} } \\
= & {\left[\frac{2 x^{3 / 2}}{3}+2 x^{1 / 2}\right]_{1}^{9} } \\
= & {\left[\frac{2 \sqrt{x^{3}}}{3}+2 \sqrt{x}\right]_{1}^{9} } \\
= & {\left.\left[\frac{2 x \sqrt{9^{3}}}{3}+2 \sqrt{9}\right]_{-} \frac{2 \sqrt{13}}{3}+2 \sqrt{1}\right] } \\
= & {[18+6]-\left[\frac{18}{3}+2\right] } \\
& 22-\frac{2}{3} \\
& \frac{21 \frac{1}{3}}{}
\end{aligned}
$$

$$
x^{2}-5 x=0 \quad \int_{0}^{5}
$$

$$
\begin{aligned}
& x(x-5)=0 \\
& x=0, x=5 .
\end{aligned}=\int^{5} x+10 x-2 x^{2}-1-5 x+x^{2} d x
$$

$$
=\int_{c}^{5} 5 x-x^{2} d x
$$

$$
=\left[\frac{5 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{5}
$$

$$
=\left[\frac{5 \times 5^{2}}{2}-\frac{5^{3}}{3}\right]-[0]
$$

$$
\frac{375-25 c}{125}=\frac{5^{3}}{25}=\frac{5^{3}}{83}
$$

$$
\frac{125}{6}
$$

$$
=\frac{125}{6} \text { units }
$$

Past Paper Example 3: The parabola shown in the diagram has equation

$$
y=32-2 x^{2}
$$

The shaded area lies between the lines $y=14$ and $y=24$
Calculate the shaded area.

$$
\begin{gathered}
y=y \\
32-2 x^{2}=14 \\
2 x^{2}=18 \\
x^{2}=9 \\
x= \pm 3 . \\
y=y \\
32-2 x^{2}=24 \\
2 x^{2}=8 \\
x^{2}=4 \\
x= \pm 2 .
\end{gathered}
$$

u

$$
\int_{-3}^{3} 24 d x
$$

$$
\begin{array}{ll}
y=y \\
32-2 x^{2}=24
\end{array} \quad \int_{-3}^{3} 32-2 x^{2}-14 d x
$$

$$
\begin{aligned}
& =\left[32 x-\frac{2 x^{3}}{3}-14 x\right]_{-3}^{3} \\
& =\left[18 x-\frac{2 x^{3}}{2}\right]^{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[18 x-\frac{2 x^{3}}{3}\right]_{-3}^{3} \\
& =\left[18(3)-\frac{2(3)^{3}}{3}\right]-\left[18(-3)-\frac{2(-3)^{3}}{3}\right] \\
& =72 \text { uni }^{2}
\end{aligned}
$$

$$
=72 u_{n i t}{ }^{2}
$$

$$
\int_{-2}^{2} 32-2 x^{2}-24 d x
$$

$$
=\int_{-2}^{2} 8-2 x^{2} d x
$$

$$
=\left[8 x-\frac{2 x^{3}}{3}\right]_{-2}^{2}
$$

$$
=\left[8(2)-\frac{2(2)^{3}}{3}\right]^{-2}-\left[8(-2)-\frac{2(-2)^{3}}{3}\right]
$$

$$
=\left[16-\frac{16}{3}\right]-\left[-16+\frac{16}{3}\right]
$$

$$
=16-\frac{16}{3}+16-\frac{16}{3}
$$

$$
=32-\frac{32}{3}
$$

$$
=\frac{64}{3} u_{n} 13^{2}
$$

$$
\begin{aligned}
A_{T} & =72-\frac{64}{3} \\
& =\frac{152}{3} \text { mil 3 }
\end{aligned}
$$

Polynomials

A polynomial is an expression with terms of the form $a x^{n}$, where n is a whole number. For example, $5 p^{4}-3 p^{3}$ is a polynomial, but $3 p^{-1}$ or $\sqrt[3]{p^{2}}$ are not.
The degree of a polynomial is its highest power, e.g. the polynomial above has a degree of 4.
The number part of each term is called its coefficient, e.g. the coefficients of p^{4}, p^{3} and p above are 5, 3 and 0 (as there is no p term!) respectively (note that $5 p^{4}$ would also be a polynomial on its own, with coefficients of zero for all other powers of p).

Evaluating Polynomials

An easy way to find out the value of a polynomial function is by using a nested table.
Example 1: Evaluate $f(4)$ for $f(x)=2 x^{4}-3 x^{3}-10 x^{2}-5 x+7$.

Example 2: Evaluate $f(-1)$ for $f(x)=3 x^{5}-2 x^{3}+4$.

$$
\text { Dividing } 67 \text { by } 9 \text { gives an answer of " } 7 \text { remainder } 4 \text { ". We can write this in two ways: }
$$

$$
67 \div 9=7 \text { remainder } 4 \quad \text { OR } \quad 9 \times 7+4=67
$$

For this problem, 9 is the divisor, 7 is the quotient, and 4 is the remainder (note that if we were dividing 63 by 9 , the remainder would be zero, since 9 is a factor of 63)

Example 3:
a) Remove brackets and simplify:
b) Evaluate $f(3)$ for $f(x)=x^{3}+6 x^{2}-39 x+47$

This shows that

$$
x^{3}+6 x^{2}-39 x+47=(x-3)\left(x^{2}+9 x-12\right)+11
$$

OR
$\left(x^{3}+6 x^{2}-39 x+47\right) \div(x-3)=\left(x^{2}+9 x-12\right)$ remainder 11

Considered together, these two theorems allow us to factorise algebraic functions (remember that a factor is a number or term which divides exactly into another, leaving no remainder).

f polynomial $f(x)$ is divided by $(x-h)$, then

On division of polynomial $f(x)$ by $(x-h)$
if $f(h)=0$, then $(x-h)$ is a factor of $f(x)$
In other words, if the result of synthetic division on a polynomial by h is zero, then h is a root of the polynomial, and $(x-h)$ is a factor of it.

Example 8: Find the value of k for which $(x+3)$ is a factor of $x^{3}-3 x^{2}+k x+6$

Since $(x+3)$ is a factor
$-3 k-48=0$
$-3 k=48$
$k=-16$

Example 9: Find the values of a and b if $(x-3)$ and $(x+5)$ are both factors of $x^{3}+a x^{2}+b x-15$

$$
\begin{aligned}
& \left.3 \left\lvert\, \begin{array}{llll}
1 & a & b & -15 \\
& 3 & a+3 a & 27+9 a+3 b
\end{array}\right.\right] . \\
& \text { Sure }(x-3) \text { is a factor } 12+9 a+3 b=0 \text {. } \\
& -5 \left\lvert\, \begin{array}{llll}
1 & a & b & -15 \\
& -5 & 25-5 a & 25 a-5 b-125
\end{array}\right. \\
& 1 \quad a-5 \quad 25-5 a+b \text { 25a-5b-140 } \\
& \text { Since }(x+5) \text { is a factor } 25 a-5 b-140=0 \\
& 9 a+3 b=-12 \quad \times 5 \\
& 25 a-5 b=140 . \times 3 \\
& 45 a+15 b=-60 \text { Adal. } \\
& 75 a-15 b=420 \text { - } \\
& \begin{aligned}
120 a & =360
\end{aligned} \\
& a=3 \\
& \text { When } a=3,45(3)+15 b=-60 \\
& 135+15 b=-60 \\
& 15 b=-195 \\
& b=-13 \\
& \therefore a=3, b=-13 \text {. }
\end{aligned}
$$

Polynomial equations are solved in exactly the same way as we solve quadratic equations: make the right hand side equal to zero, factorise, and solve to find the roots.
Example 10: The graph of the function $y=x^{3}-7 x^{2}+7 x+15$ is shown.
Find the coordinates of points A, B and C .

Curves cut x-axis when $y=0$

$$
x^{3}-7 x^{2}+7 x+15=0
$$

$$
\left.3 \left\lvert\, \begin{array}{ccc}
1-7 & 15 \\
1 & 3 & -12
\end{array}\right.\right]
$$

$$
\begin{aligned}
& 1-4-5[0 \\
& (x-3)\left(x^{2}-4 x-5\right)=0^{x-5}
\end{aligned}
$$

$$
(x-3)(x-5)(x+1)=0
$$

$$
x=3, x=5, x=-1
$$

1

Higher Maths Notes

This uses exactly the same system as that for quadratic graphs, but with more brackets (see page 19).
Remember: tangents to the \boldsymbol{x} - axis have repeated roots!
Example 11: Find an expression for cubic function $f(x)$.

$$
\begin{aligned}
& y=k(x-a)(x-b)(x-c) \\
& y=k(x+2)(x-5)(x-5) \\
& \text { When } x=0 \& y=5 \\
& 5=k(0+2)(c-5)(0-5) \\
& 5=50 k \\
& 12=\frac{1}{10} \\
& \therefore \quad y=\frac{1}{10}(x+2)(x-5)^{2}
\end{aligned}
$$

Example 12: a) Find the x - and y-intercepts of the graph of $y=x^{4}-6 x^{3}+13 x^{2}-12 x+4$. Curve culs x-axis when $y=3$. $x^{4}-6 x^{3}+13 x^{2}-12 x+4=0$

$\begin{aligned} x=1, x=2 & (1,0)(2,0) \\ & (0,4)\end{aligned}$
b) Find the position and nature of the stationary points of $y=x^{4}-6 x^{3}+13 x^{2}-12 x+4$.

$$
\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-12
$$

sp's when $\frac{d y}{d x}=0$
$4 x^{3}-18 x^{2}+26 x-12=0$

$2(x-1)\left(2 x^{2}-7 x+6\right)=0 x-2$
$2(x-1)(2 x-3)(x-2)=0$
$x=1, x=\frac{3}{2}, x=2$.

c) Hence, sketch and annotate the graph of $y=x^{4}-6 x^{3}+13 x^{2}-12 x+4$.

Trigonometry: Addition Formulae and Equations	
What you must know from National 5!!!	
We can use the above graphs to find the values of:	
$\begin{aligned} & \sin 0^{\circ}=0 \\ & \sin 90^{\circ}=1 \\ & \sin 180^{\circ}=0 \\ & \sin 270^{\circ}=-1 \\ & \sin 360^{\circ}=0 \\ & \hline \end{aligned}$	$\begin{aligned} & \cos 0^{\circ}=1 \\ & \cos 90^{\circ}=0 \\ & \cos 180^{\circ}=-1 \\ & \cos 270^{\circ}=0 \\ & \cos 360^{\circ}=1 \\ & \hline \end{aligned}$

We can use these graphs to solve the following:		
$\sin x^{\circ}=0$	$\sin x^{\circ}=-1$	$\sin x^{\circ}=1$
$(0 \leq x \leq 360)$	$(0 \leq x \leq 360)$	$(0 \leq x \leq 360)$
$x=0^{\circ}, 180^{\circ}, 360^{\circ}$	$x=270^{\circ}$	$x=90^{\circ}$
$\cos x^{\circ}=0$	$\cos x^{\circ}=-1$	$\cos x^{\circ}=-1$
$(0 \leq x \leq 360)$	$(0 \leq x \leq 360)$	$(0 \leq x \leq 360)$
$x=90^{\circ}, 270^{\circ}$	$x=270^{\circ}$	$x=0^{\circ}, 360^{\circ}$

Remember, this means that:
$\sin 160^{\circ}$ would be
$\cos 200^{\circ}$ would be
$\tan 200^{\circ}$ would be
$\sin 320^{\circ}$ would be and so on...

Equations	
Example A: $\begin{gathered} \sin x^{\circ}=0.423 \quad(0 \leq x \leq 360) \\ x=\sin ^{-1}(0.423) \\ x=25^{\circ}(\text { R.A }) \\ x=(0+25)^{\circ},(180-25)^{\circ} \\ x=25^{\circ}, 155^{\circ} \end{gathered}$	Step 1: Consider 0.423 Step 2: We know that we can find the other 3 angles in the family $155^{\circ}, 205^{\circ}, 335^{\circ}$ Step 3: We only want the angles which will give +ve answers for sin.
Example B: $\begin{gathered} \cos x^{\circ}=-0.584 \quad(0 \leq x \leq 360) \\ x=\cos ^{-1}(0.584) \\ x=54.3^{\circ}(\text { R.A }) \\ x=(180-54.3)^{\circ},(180+54.3)^{\circ} \\ x=125.7^{\circ}, 234.3^{\circ} \end{gathered}$	Step 1: Consider 0.584 (ignore -ve) Step 2: We know that we can find the other 3 angles in the family $125.7^{\circ}, 234.3^{\circ}, 305.7^{\circ}$ Step 3: We only want the angles which will give -ve answers for cos.

If we draw a circle and make a sector with an arc of exactly one radius long, then the angle at the centre of the sector is called a radian.

Remember that Circumference $=\pi \mathrm{D}=2 \pi \mathrm{r}$. This means that there are 2π radians in a full circle.

$$
360^{\circ}=2 \pi \text { radians }
$$

$180^{\circ}=\pi$ radians

Example 1: Convert:
a) 90° to radians
b) 60° to radians
e) $\frac{4 \pi}{3}$ radians to degrees

c) 225° to radians
f) $\frac{11 \pi}{6}$ radians to degrees

Consider the following triangles:

A right-angled triangle made by halving an equilateral triangle of side 2 unit

	0°	30°	45°	60°	90°
	0	$\left(\frac{\pi}{6}\right)$	$\left(\frac{\pi}{4}\right)$	$\left(\frac{\pi}{3}\right)$	$\left(\frac{\pi}{2}\right)$
\sin					
\cos					
Tan					

Example 2: State the exact values of:

| a) $\sin 150^{\circ}$ b) $\tan 315^{\circ}$
 d) $\cos \frac{7 \pi}{6}$
 din $(-30)^{\circ}$
 e) $\cos (-120)^{\circ}$
 f) $-\tan \frac{\pi}{4}$ | |
| :--- | :--- | :--- |
| | |

Example 3: The graphs below is of the form $y=a \operatorname{sinbx}+c$ and $y=a \operatorname{cosbx}+c$ respectively. Identify the values of a, b and c in each graph

Addition Formulae
Finding the value of a compound angle is not quite as simple as adding together the values of the

$\sin (A+B)=\sin A \cos B+\cos A \sin B \quad \sin (A-B)=\sin A \cos B-\cos A \sin B$
Example 4: Expand each of the following:
a) $\sin (X+Y)$
b) $\sin (Q+3 P)$

Example 5: Find the exact value of $\sin 75^{\circ}$.

Example 6: A and B are acute angles where $\tan A=\frac{12}{5}$ and $\tan B=\frac{3}{4}$. Find the value of $\sin (A+B)$.

Example 7: Expand each of the following:

Example 8: In the diagram opposite:
$A C=C D=2$ units, and $A B=B C=1$ unit.
Show that $\sin X$ is exact l $\frac{1}{\sqrt{10}}$

$$
\begin{aligned}
& =\frac{2}{\sqrt{8}} \times \frac{2}{\sqrt{5}}-\frac{2}{\sqrt{8}} \times \frac{1}{\sqrt{5}} \\
& =\frac{4}{\sqrt{40}}-\frac{2}{\sqrt{60}} \\
& =\frac{2}{\sqrt{40}}=\frac{7}{4 \sqrt{10}} \\
& =\frac{1}{\sqrt{10}} \\
& \begin{array}{ll}
\sqrt{40} & A^{2}=\beta^{2}+r^{2} \\
=\sqrt{4} \times V 10 & A^{2}=1^{2} \div 2^{2}
\end{array} \\
& \text { Aspegand }=2 \sqrt{10}
\end{aligned}
$$

Example 10:

Higher Maths Notes

NOTE: these are important formulae which are not provided in the exam paper formula sheets!

$\sin x^{\circ}$
$\cos x^{\circ}$

$$
\sin ^{2} x^{\circ}+\cos ^{2} x^{\circ}=1
$$

Note that due to the second formula, we can also say that:
\square
$\cos ^{2} x^{\circ}=1-\sin ^{2} x^{\circ}$ AND \square
To prove that an identity is true, we need to show that the expression on the left hand side of the equals sign can be changed into the expression on the right hand side.
Example 11: Prove that:
a) $\cos ^{4} \alpha-\sin ^{4} \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha$
b) $\tan 3 \theta+\tan \theta=\frac{\sin 4 \theta}{\cos \theta \cos 3 \theta}$

$$
\begin{gathered}
\cos ^{4} \alpha-\sin ^{4} \alpha \\
\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right. \\
\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right) \times 1 \\
=\cos ^{2} \alpha-\sin ^{2} \alpha
\end{gathered}
$$

$$
=\frac{\sin 3 \theta \cos \theta}{\cos \theta \cos 3 \theta}+\frac{\sin \theta \cos 3 \theta}{\cos \theta \cos 3 \theta}
$$

$$
=\frac{\sin 3 \theta \cos \theta+\cos 3 \theta \sin \theta}{\cos \theta \cos 3 \theta}
$$

$$
=\frac{\sin (3 \theta+\theta)}{\cos \theta \cos 3 \theta}
$$

$$
=\frac{\sin 4 \theta}{\cos \theta \cos 3 \theta}
$$

Higher Maths Notes
3c) $\cos (360-x)^{a}=\cos x^{\circ}$.
CHS

$$
\begin{aligned}
& \operatorname{Cos} 360^{\circ} \cos x+\sin 360^{\circ} \sin x \\
& 1 \times \cos x+0 \\
& =\operatorname{coss} x^{C} .
\end{aligned}
$$

5a) $\frac{\sin (\alpha-\beta)}{\cos \alpha \cos \beta}=\tan \alpha-\operatorname{ta} \beta$
LHS
$\frac{\sin \alpha \cos \beta-\cos \alpha \sin \beta}{\cos \alpha \cos \beta}$
$=\frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta}-\frac{\cos \alpha \sin \beta}{\operatorname{cosk} \cos \beta}$

$$
=\frac{\sin \alpha}{\cos \alpha}-\frac{\sin \beta}{\cos \beta}
$$

$$
=\tan \alpha-\tan \beta
$$

2b) $\sin (\alpha+\beta)-\sin _{2 i n}(\alpha-\beta)=2 \cos \alpha \sin \beta$

$$
\begin{aligned}
& \sin (\alpha+\cos \beta+\cos \alpha \sin \beta-(\sin \alpha \cos \beta-\cos \alpha \sin \beta) \\
= & \sin \alpha \cos \beta+\cos \alpha \sin \beta-\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
= & \sin \alpha \cos \beta+\cos \alpha \sin \beta . \\
= & 2 \cos \beta
\end{aligned}
$$

3d).

$$
\begin{aligned}
& \cos (180+x)=-\cos x^{\circ} \\
= & \frac{\operatorname{cis}}{} \\
& \cos 180 \cos x-\sin 180 \sin x \\
= & -1 \times \cos x-0 \times \sin x \\
= & -\cos x .
\end{aligned}
$$


```
sin2A}=\operatorname{sin}(A+A)\quad\operatorname{cos}2A=\operatorname{cos}(A+A
    = SinAC\operatorname{cos}A+\operatorname{Cos}A\operatorname{Sin}A=\operatorname{Cos}A\operatorname{Cos}A-\operatorname{Sn}A\operatorname{SnA}
    2 2sin4Cos}
    = }\mp@subsup{\operatorname{cos}}{}{2}A-\mp@subsup{\operatorname{sin}}{}{2}A
```


To summarise:

Example 12: Express the following using double angle formulae:

Higher Maths Notes

Example 14: Prove that $\frac{\sin 2 x}{1+\cos 2 x}=\tan x$

$$
\begin{aligned}
& \frac{\operatorname{LHS}}{\operatorname{Sin} 2 x} \\
&= \frac{2 \sin x \cos x}{x+2 \cos ^{2} x-x} \\
&= \frac{2 \sin x \cos x}{2 \cos x} \\
&= \frac{\not x \sin x}{\not 2 \cos x}=\frac{\sin x}{\cos x} \\
&=\tan x
\end{aligned}
$$

$$
\begin{aligned}
& \sin 2 x \\
&= 2 \sin x \cos x \\
& \cos 2 x \\
&= 2 \cos ^{2} x-1
\end{aligned}
$$

9.5 Solving non-unitary argument trig equations.
a) Solve for x :
b) Solve for x :

$$
\begin{aligned}
& \sqrt{3} \tan \frac{1}{2} x^{\circ}=1 \quad 0 \leq x \leq \pi \\
& \begin{aligned}
\tan \frac{1}{2} x^{0} & =\frac{1}{\sqrt{3}} \quad \\
\frac{1}{2} x^{0} & =\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)
\end{aligned} \\
& \frac{1}{2} x^{0}=30^{a}(R-A) \\
& \frac{1}{2} x^{\circ}=30^{\circ}, 210^{\circ} \\
& x^{\circ}=60^{\circ}, 420^{\circ} \\
& x=6 c^{\circ} \text {. Ont of roger. } \\
& x=\frac{\pi}{3} \text {. } \\
& \operatorname{Sn} x^{\circ}=\frac{-1}{2} \text {. } \\
& x=\sin ^{-1}\left(+\frac{1}{2}\right)
\end{aligned}
$$

Let $f(x)=\sin x$ and $g(x)=\cos x$. The graphs of $y=f(x)$ and $y=g(x)$ are shown below, where the x-axis is measured in radians. Tangents to each curve have been drawn at the following points:

On $y=\sin x$, the tangent at $x=0$ has $m=1$, and the tangent at $x=\pi$ has $m=-1$.
On $y=\cos x$, the tangent at $x=\frac{\pi}{2}$ has $m=-1$, and the tangent at $x=\frac{3 \pi}{2}$ has $m=1$.
Draw the graphs of $y=f^{\prime}(x)$ and $y=g^{\prime}(x)$ below.

$$
\text { If } y=\sin x, \frac{d y}{d x}=\quad \text { If } y=\cos x, \frac{d y}{d x}=
$$

Example 1: Find the derivative in each case:

As integration is the opposite of differentiation, we can also say that:
$\int \cos x \mathrm{dx}=$
$\int \sin \mathrm{x} d \mathrm{x}=$
Example 2: Find:
a) $\int 24 \cos x d x$
b) $\int-3$ sinsds
c) $\int(3 x-\cos x) d x$
$=24 \sin x+c$

IMPORTANT!

- Definite Integrals of sin and cos functions MUST be done in radians!
- NEVER ignore any brackets where the limit is zero

Example 3: Evaluate:

Example $4 \cdot$ By first expanding the bracketc_find the derivatives of the following functions:

In each case, we can factorise the answer to give us back the original function, which has been differentiated as if it was just an x^{2} or x^{3} term (multiply by the old power, drop the power by one), and then multiplied by the derivative of the function in the bracket.

This is known as the Chain Rule, and can
be written generally for brackets with powers as:

```
For f(x) =a(........)}\mp@subsup{)}{}{n},\mp@subsup{f}{}{\prime}(x)=an(\ldots......).) (n-1 x (DOB
    where DOB = the Derivative Of the Bracket
```

Example 6: Differentiate:
a) $y=\sin (3 x)$
b) $f(x)=\cos \left(\frac{\pi}{4}-2 x\right)$
c) $y=\sin \left(x^{2}\right)$

$$
\begin{array}{rl|l}
\frac{d y}{d x} & =\cos 3 x \times 3 & f^{\prime}(x)=-\sin \left(\frac{\pi}{4}-2 x\right) \times(-2) \\
& =3 \cos 3 x & =2 \sin \left(\frac{\pi}{1}-2 x\right)
\end{array}
$$

Example 7: Find the equation of the tangent to $y=\sin \left(2 x+\frac{\pi}{3}\right)$ when $x=\frac{\pi}{6}$.

$$
\begin{aligned}
& \frac{d y}{d x}=\cos \left(2 x+\frac{\pi}{3}\right) \times 2 \\
&=2 \cos \left(2 x+\frac{\pi}{3}\right) \\
& \frac{d y}{d x}= 2 \cos \left(2 \times \frac{\pi}{6}+\frac{\pi}{3}\right) \\
&= 2 \cos \frac{2 \pi}{3} \\
&= 2 x\left(-\frac{y}{2}\right) \quad m=-1 \\
&==-1 \\
& y= \sin \left(\frac{2 \pi}{3}\right) \quad\left(\frac{\pi}{6}, \frac{\sqrt{3}}{2}\right) \\
& y=\frac{\sqrt{3}}{2} \quad y-b=m(x-a) \\
& y-\frac{\sqrt{3}}{2}=-1\left(x-\frac{\pi}{6}\right) \\
& y-\frac{\sqrt{3}}{2}=-x+\frac{\pi}{6} \\
& y=-x+\frac{\pi}{6}+\frac{\sqrt{3}}{2}
\end{aligned}
$$

When $x=\frac{\pi}{6}$

We have seen that integration is anti-differentiation, i.e. the opposite of differentiating.
As finding the derivative of a function with a bracket included multiplying by DOB, then integrating must also include dividing by DOB.

To integrate

$$
\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{(n+1) \times a}+c
$$

Important Point: Integration is more complicated than differentiation!
This method only works fo linear functions inside the bracket, i.e. the highest power $=1$. To find, e.g., $\int\left(g^{3}-7\right)^{2} \mathrm{dg}$, we would have to multiply out the bracket and integrate each term separately.

Example 8: Evaluate:
a) $\int(x+3)^{3} d x$
$=\frac{(x+3)^{4}}{4 \times 1}+C$.
$=\frac{1}{4}(x+3)^{4}+c$
b) $\int(4 x-7)^{9} d x$ c) $\int \frac{d t}{(4 t+9)^{2}}\left(t \neq-\frac{9}{4}\right)$
$\left.=\frac{(4 x-7)}{10 \times 4}+c \right\rvert\,=\int \frac{1}{(4 t+a)^{2}} d$
$=\frac{1}{40}(40 c-7)^{10}+c=\int(4 t+a)^{-2} d t$.
$=\frac{(4 t+a)^{-1}}{-1 \times 4}+c$.
$=-\frac{1}{4}(4 t+9)^{-1}+C$

$$
\begin{aligned}
& \text { d) } \int_{1}^{2}(2 t+5)^{3} d t \quad 4-2 \quad \text { e) } \int_{0}^{6} \frac{d x}{\sqrt{4 x+1}}\left(x>-\frac{1}{4}\right) \\
& =\left[\frac{(2 t+5)^{4}}{4 \times 2}\right]_{1}^{2}=\int_{0}^{6} \frac{1}{\sqrt{4 x+1}} d x \\
& =\left[\frac{(2,2+5)^{4}}{8}\right]-\left[\frac{(2 \times 1+5)^{4}}{8}\right]=\int_{0}^{6} \frac{1}{(4 x+1)^{1 / 2}} d x \\
& =820.125-300.125 \\
& =520 \\
& =\left[\frac{(4 x+1)^{1 / 2}}{\frac{1}{2} \times 4}\right]_{0}^{6} \\
& =\left[\frac{\sqrt{4 x+1}}{2}\right]_{0}^{6^{c}} \\
& =\left[\frac{\sqrt{4 \times 6+1}}{2}\right]-\left[\frac{\sqrt{4 \times 0+1}}{2}\right] \\
& \begin{array}{l}
=\frac{5}{2}- \\
=\frac{4}{2} \\
=2^{2} .
\end{array}
\end{aligned}
$$

Example 9: Evaluate:
a) $\int \sin (4 x) d x \quad$ b) $\int 3 \cos (2 x) d x \quad$ c) $\int \sin (1-2 x) d x$
$=-\frac{\cos 4 x}{4}+C .\left|=\frac{3 \sin 2 x}{2}+C\right| \begin{aligned} & =\frac{-\cos (1-2 x)}{-2}+C \\ & =\frac{\cos (1-2 x)}{2}+C .\end{aligned}$

$$
\begin{aligned}
& \text { d) (i) Write } \cos ^{2} x \text { in terms of } \cos 2 x \\
& \cos 2 x=2 \cos ^{2} x-1 \\
& 2 \cos ^{2} x-1=\cos 2 x \\
& 2 \cos ^{2} x=\operatorname{Cos} 2 x+1 \\
& \cos ^{2} x=\frac{1}{2}(\cos 2 x+1) \\
& =\frac{1}{2} \cos 2 x+\frac{1}{2} \\
& \text { (ii) Hence find } \int 4 \cos ^{2} x d x \\
& =\int 4\left(\frac{1}{2} \cos 2 x+\frac{1}{2}\right) d x \text {. } \\
& =\int 2 \cos (2 x)+2 d x \text {. } \\
& =\frac{2 \sin 2 x}{2}+2 x+c \\
& =\sin 2 x+2 x+c
\end{aligned}
$$

Uses of Calculus in Real Life Situations
In the same way that geometry is the study of shape, calculus is the study of how functions change his means that wherever a system can be described mathematically using a function, calculus can be used to find the ideal conditions (as we have seen using optimisation) or to use the rate of change at a given time to find the total change (using integration)
As a result, calculus is used throughout the sciences: in Physics (Newton's Laws of Motion, Einstein's Theory of Relativity), Chemistry (reaction rates, radioactive decay), Biology (modelling changes in population), Medicine (using the decay of drugs in the bloodstream to determine dosages), Economic ding the naximum profit), Engineering (maximising the strength of a building whilst usin minimum of material, working out the curved path of a rocket in space) and more.

Example 11: In Physics, the formulae for kinetic energy $\left(E_{k}\right)$ and momentum (p) are respectively

$$
E_{k}=\frac{1}{2} m v^{2}
$$

and
$p=m v$
a) How could the formula for momentum be obtained from the formula for kinetic energy?

$\mathrm{Ch}^{\prime}=\mathrm{MV}$
 $=P$.

a.ferentiote
b) How could the formula for kinetic energy be
obtained from the formula for momentum?
$\int m v$. $\int_{3}^{3 v}$

The most common use of this approach considers the link between displacement, velocity and acceleration.
When an object moves on a journey, we normally think of the total distance travelled.

Displacement is the straight line distance
between the start and end points of a journey (so the displacement is not necessarily the
same as the distance travelled!)
As displacement is a "straight-line" measurement, it involves direction and therefore is a vector quantity: another name for displacement is the position.
Velocity is the vector equivalent of speed, i.e. if speed is a measure of the distance travelled in a given time, then velocity is a measure of the change in displacement which occurs in a given time
Velocity is defined as the rate of change of displacement with respect to time.

Acceleration measures the change in velocity of an object in a given time: if two race cars have the same top speed, then the one which can get to that top speed first would win a race. Acceleration is defined as the rate of change of velocity with respect to time.
If one of either displacement, velocity or acceleration can be described using a function, then the other two can be obtained using either differentiation or integration, i.e.:

Example 12: The displacement $s \mathrm{~cm}$ at a time t seconds of a particle moving in a straight line is given by the formula $s=t^{3}-2 t^{2}+3 t$.

Higher Maths Notes
Example 13: The velocity of an electron is given by the formula $v(t)=5 \sin \left(2 t-\frac{\pi}{4}\right)$.
a) Find the first time when its acceleration is at its maximum.
b) Find a formula for the displacement of the
$v^{\prime}(t)=5 \cos \left(2 t-\frac{\pi}{4}\right) \times 2$ electron, given that $s=0$ when $t=0$.
$a=\operatorname{cocs}\left(2 t-\frac{\pi}{4}\right)$.

$$
\int \sin \left(2 t-\frac{\pi}{4}\right) d t
$$

sP's when $v^{\prime}(t)=0$.
$10 \cos \left(2 t-\frac{\pi}{4}\right)=0$
$\cos \left(2 t-\frac{\pi}{4}\right)=0$
$S=\frac{-5}{2} \cos \left(2 t-\frac{\pi}{4}\right)+C$
$2 t-\frac{\pi}{4}=\frac{\pi}{2}, \frac{3 \pi}{2}$
$0=\frac{-5}{2} \times \cos \left(\frac{-\pi}{4}\right)+C$
$2 t=\frac{3 \pi}{4}, \frac{7 \pi}{4}$
$t=\frac{3 \pi}{8}, \frac{7 \pi}{8}$.

t	$\stackrel{0}{8} \frac{3 \pi}{8} \xrightarrow{\frac{\pi}{2}} \frac{7 \pi}{8} \rightarrow$
$v^{\prime}(t)$	$+0-0+1$
Shape	$1-1-1$

Max when $t=\frac{3 \pi}{8}$

Past Paper Example 1: A curve has equation $y=(2 x-9)^{\frac{1}{2}}$. Part of the curve is shown in the diagram opposite.
a) Show that the tangent to the curve at the point where
$x=9$ has equation $y=\frac{1}{3} x$

b) Find the coordinates of A, and hence find the shaded area.

wherse $=9$
$y=(2 \times 9-9)^{1 / 2}$
$y=3$ (9,3)
$y-b=m(x-a)$
$y-b=M(x-a)$
$y-3=\frac{1}{3}(x-a)$
$y=\frac{1}{3} x$

Past Paper Example 2: A curve for which $\frac{d y}{d x}=3 \sin 2 x$ passes through the point $\left(\frac{5 \pi}{12}, \sqrt{3}\right)$.
Find y in terms of x.

$$
\begin{aligned}
& y=\frac{-3 \cos (2 x)}{2}+C . \\
& \text { When } x=\frac{5 \pi}{12} y=\sqrt{3} . \\
& \sqrt{3}=\frac{-3 \cos \frac{5 \pi}{8}}{2}+C . \\
& \sqrt{3}=\frac{3 \sqrt{3}}{4}+C \\
& c=\sqrt{3}-\frac{3 \sqrt{3}}{4} \\
& c=\frac{\sqrt{3}}{4} \\
& y=\frac{-3 \cos 2 x}{\alpha}+\frac{\sqrt{3}}{4}
\end{aligned}
$$

Higher Maths Notes
Past Paper Example 3: Find the values of x for which the function $f(x)=2 x+3+\frac{18}{x-4}, x \neq 4$, is increasing.
function verse when $f^{\prime}(x)>0$.

$$
\begin{aligned}
& f(x)=2 x+3+18(x-4)^{-1} \\
& f^{\prime}(x)=2-18(x-4)^{-2} \times 1 \\
& =2-\frac{18}{(2-41)^{2}} \\
& 2-\frac{18}{(x-4)^{2}}>0 \times(x-4)^{2} \\
& 2(x-4)^{2}-18>0 \\
& \alpha(x-4)^{2}>18 \\
& \begin{array}{l}
(2 c-4)^{2}>9 . \\
x\langle 1, x>7
\end{array} \quad \begin{array}{l}
\left(6(-4)^{2}=9\right. \\
(x-4)^{2}-9=0 \\
x^{2}-8 x+6-9=0 \\
x^{2}-8 x+7=0
\end{array}
\end{aligned}
$$

Trigonometry: The Wave Function

It is possible to model the behaviour of waves in real-life situations (e.g. the interaction of sound waves or the tides where two bodies of water meet) using trigonometry. Consider the result of combining the waves represented by the functions $y=\sin x^{\circ}$ and $y=\cos x^{\circ}$. To find what the resultant graph would look like, complete the table of values (accurate to $1 \mathrm{~d} . \mathrm{p}$.) and plot on the axes below.

Looking at the graph of $y=\sin x^{\circ}+\cos x^{\circ}$ above, we can compare it to cosine graph shifted 45° to the right (ie. $y=\cos (x-\alpha)^{\circ}$), and stretched vertically by a factor of roughly 1.4 (i.e. $y=k \cos x^{\circ}$).
It is important to note, however, that the graph could also be described as a cosine graph shifted to the left, and also as a sine graph! Therefore, $\mathrm{y}=\sin \mathrm{x}^{\circ}+\cos x^{\circ}$ could also be written as:

$$
y=1.4 \cos (x+315) \quad O R \quad y=1.4 \sin (x-315) \quad O R \quad y=1.4 \sin (x+\ldots 45)
$$

Rather than drawing an approximate graph, it is more useful if we use an algebraic method.
NOTE: you will only be asked to use one specific form to describe a function, not all four!
Example 1: Writelsin $x^{\circ}+\cos x^{\circ}$ in the form $k \cos (x-\alpha)^{\circ}$, where $0 \leq \alpha \leq 360$.

$$
\begin{aligned}
& R \sin \alpha=.1 \quad R \cos (x-\alpha) \\
& k \cos \alpha=1 \quad k=\sqrt{1^{2}+1^{2}} \\
& R(\cos x \cos \alpha+\sin x \sin \alpha) \\
& \frac{k \sin \alpha}{k \cos \alpha}=1 \\
& \tan \alpha=1 \\
& \alpha=\tan ^{-1}(1) \\
& \alpha=45^{\circ}(P \cdot A) \text {. } \\
& \alpha=45^{\circ} \\
& \sqrt{2} \cos (x-45)^{T_{0}} \mid \sqrt{ }
\end{aligned}
$$

1) Differentiate the following function.

$$
f(x)=\frac{x^{3}-2 x^{2}+x-3}{x^{2}}
$$

2) Find the equation of the line $B D$, the median
of $A C$

$$
\begin{aligned}
M_{B D}=\frac{8-7}{1-3} \quad M P_{A C}= & (3,7) \\
=\frac{1}{-2} \quad & y-b=M(x-a) \\
& y-7=-\frac{1}{2}(x-3) \\
& 2 y-14=-x+3 \\
& 2 y+x-17=0
\end{aligned}
$$

Example 2: Write $\sin x-\sqrt{ } 3 \cos x$ in the form $k \cos (x-\alpha)$, where $0 \leq \alpha \leq 2 \pi$

$$
\begin{aligned}
& R \sin \alpha=1 \\
& h \cos \alpha=-\sqrt{3} \\
& R=\sqrt{1^{2}+(\sqrt{3})^{2}} \\
& R=\sqrt{1+3} \\
& k=2 \\
& \begin{aligned}
\frac{\sin \alpha}{\cos \alpha} & =\frac{1}{-\sqrt{3}} \\
\tan \alpha & =-\frac{1}{\sqrt{3}} \\
\alpha & =\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
\alpha & =\frac{\pi}{6} \quad(R-A)
\end{aligned} \\
& \alpha=\pi-\frac{\pi}{6} \\
& \alpha=\frac{5 \pi}{6} . \quad \therefore 2 \cos \left(x-\frac{5 \pi}{6}\right)
\end{aligned}
$$

Higher Maths Notes

Example 4: Write $2 \sin 2 \theta-\cos 2 \theta$ in the form $k \sin (2 \theta+\alpha)$, where $0 \leq \alpha \leq 2 \pi$

$$
\begin{aligned}
& R(\sin 2 \Theta \cos \alpha+\cos 2 \theta \sin \alpha) \\
& k \sin \alpha=-1 \\
& k \cos \alpha=2 \\
& =R \cos \alpha \sin 2 \theta+k \sin \alpha \cos 2 \theta \\
& \text { (2) } \\
& -1 \\
& R=\sqrt{-1^{2}+2^{2}} \\
& k=\sqrt{1+4} \\
& k=\sqrt{5} \text {. } \\
& \tan \alpha=\frac{-1}{2} \text {. } \\
& \alpha=\tan ^{-1}\left(\frac{1}{2}\right) \\
& \alpha=26.6^{\circ}(\cap . A) \text {. } \\
& 5 \\
& \begin{array}{r}
360 \\
-26.6 \\
\hline 333.4
\end{array}
\end{aligned}
$$

In almost all cases, questions like these will be split into two parts, with a) being a "write in the form $y=k \cos (x-\alpha)$ " followed by b) asking "hence or otherwise solve..........".

Use the wave function from part a) to solve the equation

Example 5:

a) Write $2 \cos x^{\circ}-\sin x^{\circ}$ in the form $k \cos (x-\alpha)^{\circ}$ where $0 \leq \alpha \leq 360$

Example 6:

$$
\begin{aligned}
& \text { a) Write } \sqrt{3} \sin x+\cos x \text { in the form } k \cos (x-\alpha)^{\circ} \text {, where } 0 \leq \alpha \leq 360^{\circ} \\
& k \sin \alpha=\sqrt{3} \\
& k \cos \alpha=1 \quad k=\sqrt{3^{2}+1^{2}} \\
& \tan \alpha=\sqrt{3} \quad R=\sqrt{4} \\
& \alpha-60^{\circ}(n A) \\
& R=2 .
\end{aligned}
$$

$$
\therefore 2 \cos (x-60)^{\circ} \text {. }
$$

b) Find algebraically for $0 \leq x \leq 360^{\circ}$:
(i) The maximum and minimum turning points of
 $y=\sqrt{3} \sin x^{\circ}+\cos x^{\circ}$.

Maxcous at 2 wax $=60^{\circ}$

(ii) The points of intersection of $y=\sqrt{ } 3 \sin x^{\circ}+\cos x^{\circ}$ with the coordinate axes.

cuts y-axisuter $x=0$.

$$
y=2 \cos (0-6)^{\circ}
$$

$$
\begin{aligned}
& y=2 \cos (-6 c)^{\circ} \\
& y=
\end{aligned}
$$

$$
y=2 \times \cos 30^{\circ}
$$

$y=2 \times \cos 60^{\circ}$ $y=2 \times \frac{1}{2}$

$$
y=1 .
$$

$(0,1)$

The trig equations we can be asked to solve at Higher level can be split into three types based on the angle (i.e. $x^{\circ}, 2 x^{\circ}, 3 x^{\circ}$ etc) and the function(s) (i.e. $\left.\sin , \cos , \tan , \sin \& \cos \right)$.

Type One: One Function One Angle	$\text { e.g.: } \quad \begin{aligned} 2 \sin 4 x+1 & =0 \\ \tan ^{2} x & =3 \\ 3 \sin ^{2} x-4 \sin x+1 & =0 \end{aligned}$	1. Factorise (if necessary) 2. Rearrange to $\sin (\ldots)=(\ldots)$ [or cos, or tan] 3. Inverse $\sin / \cos / \tan$ to solve
Type Two: Two Functions One Angle	$\begin{aligned} \text { e.g.: } \quad \sin x+\cos x & =1 \\ 3 \cos (2 x)+4 \sin (2 x) & =0 \\ \cos (4 \theta)-\sqrt{ } 3 \sin (4 \theta) & =-1 \end{aligned}$	1. Rewrite as a WAVE FUNCTION (choose $\mathrm{kcos}(\mathrm{x}-\alpha)$ unless told differently) 2. Solve as Type One
Type Three: Two Angles	$\begin{array}{r} \text { e.g.: } \quad 5 \cos (2 \theta)=\cos \theta-2 \\ 2 \sin (2 x)+\sin (x)=-0.5 \\ 2 \cos 2 x-\sin x+5=0 \end{array}$	1. Rewrite the double angle and factorise (change $\cos 2 x$ to the SINGLE ANGLE function) 2. Solve as Type One

Past Paper Example:

a) The expression $\sqrt{ } 3 \sin x^{\circ}-\cos x^{\circ}$ can be written in the form $k \sin (x-\alpha)^{\circ}$, where $k>0$ and $0 \leq \alpha<360$ Calculate the values of k and α.

```
        \(R(\sin x \cos \alpha-\cos x \sin \alpha)\)
        \(k \cos \alpha \sin x-k \sin \alpha \cos \alpha\)
            (13)
        \(-2 \sin \alpha=-1\)
```



```
            \(k=\sqrt{(+1)^{2}+(\sqrt{3})^{2}}\)
            \(k=\sqrt{4}\)
            \(k=2\).
        \(2 \sin (x-30)^{\circ}\)
        \(\tan \alpha=\frac{1}{\sqrt{3}}\)
            \(\alpha=30^{\circ}(n, 4)\).
```


$$
2 \sin (x-30)^{\circ}
$$

$$
\tan \alpha=\frac{1}{\sqrt{3}}
$$

$$
\alpha=30^{\circ}(n \cdot 4) \text {. }
$$

Lesson Starter - 5B1 - Mon 18/2/19

1) The point $P(5,2)$ lies on the curve with equation $y=x^{2}-4 x+7$.

Find the equation of the tangent to the curve at P.

$$
\begin{aligned}
& \frac{d y}{d x}=2 x-4 \\
& y-b=m(x-a) \\
& \frac{d y}{d x}=2(5)-4 \\
& d x=6 \quad M=6 \\
& \text { 2) Evaluate: } \int_{1}^{2} \frac{1}{6} x^{-2} d x \\
& y-2=6(x-3) \\
& \begin{aligned}
y-2 & =6 x-30 \\
y & =6 x-28
\end{aligned} \\
& \int \frac{1}{6 x^{2}}=\left[\frac{\frac{1}{6} x^{-1}}{-1}\right]_{1}^{2} \quad \int \begin{array}{l}
6 x^{2} \\
\frac{6 x^{-1}}{-1}
\end{array} \\
& =\left[-\frac{1}{6 x}\right]_{1}^{2} \\
& =\left[-\frac{1}{12}\right]-\left[\frac{1}{6}\right]=\frac{1}{12} .
\end{aligned}
$$

Exponential functions are those with variable powers, e.g. $y=a^{x}$. Their graphs take two forms:

When $\mathrm{a}>1$, the graph:

- is always increasing
- is always positive
- never cuts the x - axis
- passes through $(0,1)$
- shows exponential growth

When $0<a<1$, the graph

- is always decreasing
- is always positive
- is always positive
- passes through $(0,1)$
- shows exponential decay

Example 1: Ulanda's population in 2018 was 100 million and it was growing at 6% per annum.
a) Find a formula P_{n} for the population in millions, \quad b) Estimate the population in the year 2026 n years later.

$$
p_{n}=100 \times 1.06^{n}
$$

$$
\begin{aligned}
P_{8} & =100 \times 1.06^{8} \\
& =159 \text { mulla } .
\end{aligned}
$$

Example 2: 8000 gallons of oil are lost in an oil spill in Blue Sky Bay. At the beginning of each week a filter plant removes 67% of the oil present.
a) Find a formula G_{n} for the amount of oil
left in the bay after n weeks.

$$
\text { eft in the bay after } n \text { weeks. }
$$

$G_{n}=8000 \times 0.33^{n}$
b) After how many complete weeks will there be less than 10 gallons left?
$G_{1}=8000 \times 0.33$
$F_{1}=2640$
$G_{2}=2640 \times{ }^{-13}$
$=871-2$
$G_{3}=871.2 \times 0.33$
$=287.5$
$C_{4} \equiv{ }_{94.9}^{287.5 \times 0.33}$

After 7 weeks

The inverse of an exponential function is known as a
 logarithmic function.

If $f(x)=a^{x}$, then $f^{-1}(x)=\log _{a} x$

 ("log to the base a of x ")We have seen that the graph of the inverse of a function can be obtained by reflection in the line $y=x$.

Since the graph of $y=2^{x}$ passes through the points $(0,1)$ and $(1,2)$, then the inverse of $f(x)=2^{x}$ must pass through the points $(1,0)$ and $(2,1)$
Example 3: Add the graph of $y=\log _{2} x$ to the graph opposite.

Note $\quad y=a^{x}$ passes through $(0,1)$ and $(1, a)$
that:

$$
y=\log _{a} x \text { passes through }(1,0) \text { and }(a, 1)
$$

$y=\mathrm{a}^{x}$ means " a multiplied by itself x times gives y "

$y=\log _{a} x$ means " y is the number of times I multiply a by itself to get x "

Since the graph does not cross the y-axis, we can only take the logarithm of a positive number
The expression " $\log _{a} x$ "can be read as " a to the power of what is equal to x ?", e.g. $\log _{2} 8$ means " 2 to the power of what equals 8 ?", so $\log _{2} 8=3$.

Example 4: Write in logarithmic form:

Example 5: Write in exponential form:

| a) $3=\log _{5} 125$
 $5^{3}=125$ b) $\log _{2} 49=2$
 $7^{2}=49$ c) $\log _{4} 4096=6$
 d) $\log _{2}\left(\frac{1}{4}\right)=-2$ $4^{6}=4096$
 $2^{-2}=\frac{1}{4}$ e) $\log _{b} g=5 h$
 $b^{5 n}=9$ f) $1=\log _{7} 7$
 1 |
| :--- | :--- |

Now do Ex 15E All

Laws of Logarithms	
$\log _{a} x y=\log _{a} x+\log _{a} y$	$\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
$\log _{a} x^{n}=n \log _{a} x$	

Example 7:
a) $\log _{2} 4+\log _{2} 8-\log _{2} \frac{1}{2}$
b) $2 \log _{5} 10-\log _{5} 4$
c) Simplify $\frac{1}{4}\left(\log _{3} 810-\log _{3} 10\right)$

Higher Maths Notes

You MUST memorise the laws of logarithms to solve log equations! As we can only take logs of positive numbers, we must remember to discard any answers which violate this rule!
Example 8: Solve:

$$
\begin{aligned}
& \text { a) } \log _{4}(3 x-2)-\log _{4}(x+1)=\frac{1}{2} \quad\left(x>\frac{2}{3}\right) \\
& \text { b) } \log _{6} x+\log _{6}(2 x-1)=2 \quad\left(x>\frac{1}{2}\right) \\
& \begin{array}{c}
=\log 4\left(\frac{3 x-2}{x+1}\right)=\frac{1}{2} \\
4^{\frac{1}{2}}=\frac{3 x-2}{x+1}
\end{array} \\
& 2 \times \frac{3 x-2}{x+1} \\
& 2(x+1)=3 x-2 \\
& 2 x+2=3 x-2 \\
& x=6 \\
& \begin{array}{c}
\log 6^{x(2 x-1)}=2 \\
6^{2}=x(2 x-1)
\end{array} \\
& 2 x^{2}-x=36 \\
& 2 x^{2}-x-36=0 \times 4 \\
& (2 x-9)(x+4)=0 \\
& x=\frac{9}{2}, x=-4
\end{aligned}
$$

The graph of the derived function of $y=a^{\times}$can be plotted and compared with the original function. The new graphs are also exponential functions. Below are the graphs of $y=2^{x}$ and $y=3^{x}$ (solid lines) and their derived functions (dotted).

$f(x)=2^{x}$

The derived function of $y=2^{x}$ lies under the original graph, but the derived function of $y=3^{\times}$lies above it.

This means that there must be a value of a between 2 and 3 where the derived function lies on the original
i.e. where $f(x)=f^{\prime}(x)$

The value of the base of this function is known as e, and is approximately 2.71828.

The function $y=e^{x}$ is known as The Exponential Function.
The function $y=\log _{e} x$ is known as the Natural Logarithm of x, and is also written as $\ln x$
Example 9: Evaluate:
Example 10: Solve:

a) e^{3}	
$=20.09$	b) $\log _{e} 120$ $\operatorname{loge}=\ln$ $\ln 120$ $=4.79$.

1) Find x when

$$
4 \log _{x} 6-2 \log _{x} 4=1
$$

$$
\log _{x} 6^{4}-\log _{x} 4^{2}=1
$$

$$
\begin{array}{rl}
\log _{x} x \\
\log x-\log x & 16
\end{array}=1=1 x^{\prime}=1
$$

$$
\begin{array}{ll}
\log x 81=1 \\
x^{\prime}=81 .
\end{array}
$$

2) Find: $\int \frac{\left(x^{2}-2\right)\left(x^{2}+2\right)}{x^{2}} d x \quad 81$.

$$
=\int \frac{x^{4}-4}{x^{2}} d x
$$

$$
=\int \frac{x^{4}}{x^{2}}-\frac{4}{x^{2}} d x .
$$

$$
=\int x^{2}-4 x^{-2} d x .
$$

$$
=\frac{x^{3}}{3}-\frac{4 x^{-1}}{-1}+c .
$$

$$
=\frac{x^{3}}{3}+4 x^{-1}+c \quad \frac{x^{3}}{3}+\frac{4}{x}+c .
$$

Example 11: Atmospheric pressure P_{t} at various heights above sea level can be determined by using the formula $P_{t}=P_{0} e^{r t}$, where P_{0} is the pressure at sea level, t is the height above sea level in thousands of feet, and r is a constant.
a) At 20000 feet, the air pressure is half that at

$$
\begin{aligned}
& \text { sea level. Find } r \text { accurate to } 3 \text { significant figures. } \\
& \text { sea level. Find } r \text { accurate to } 3 \text { significant figures. } \\
& \begin{array}{l}
P_{t}=15 \\
P_{0}=30 \\
r=?
\end{array} \\
& \begin{array}{l}
P_{t}=P_{0} e^{r t} \quad t=20 \\
15=30 \times e^{r \times 20}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 20 \mathrm{~K} \times \text { loge }_{\mathrm{e}}=\text { lase } 0.5 \\
& r=\frac{\left(\operatorname{lose}^{-5}\right.}{20} \\
& r=-0.035 d 5 \\
& \text { r~-0.0357. } \\
& P_{t}=P_{0} e^{-0}
\end{aligned}
$$

b) Find the height at which P is 10% of that at sea level.

$$
\begin{aligned}
& P_{t}=10 \\
& 10=100 \times e^{-00057 t} P_{0}=100 \\
& 10=100 \times e \quad t=\text { ? } \\
& -0.035 \mathrm{t} t \\
& e=0.1 \\
& \operatorname{loge}^{-0.0357 t}=l_{\text {che }} 0.1 \\
& -0.0357 t \times \text { lye } e=\text { (che } 0.1 \\
& t=\frac{\text { loge } C .1}{-0.0357} \\
& t=64.5 \\
& \text { hight }=64500 \text { ft }
\end{aligned}
$$

Higher Maths Notes

Example 12: A radioactive element decays according to the law $A_{t}=A_{0} e^{k t}$, where A_{t} is the number of radioactive nuclei present at time t years and A_{0} is the initial amount of radioactive nuclei.
a) After 150 years 240 g of this material had
b) The half-life of the element is the time taken decayed to 200 s Find the value of k accurate to 3 s.f. half the mass to decay. Find the half-life of the material.

Higher Maths Notes
Example 13: The world population, in billions, t years after 1950 is given by $P=2.54 e^{0.0178 t}$.
a) What was the world population in 1950 ?

$$
\begin{aligned}
& \text { When } t=0 \\
& P=2.54 \times e^{0} \\
& P=2.54 \\
& \therefore 2.54 \text { b. una people }
\end{aligned}
$$

b) Find, to the nearest year, the time taken for the population to double.
$P=5.08$ bilk.

$0.0178 t=\operatorname{loge} 2$

$$
t=\frac{\operatorname{lose}^{2}}{0.0178}
$$

$$
t=38.94 \text { yeors. }
$$

When the data obtained from an experiment results in an exponential graph of the form $y=k x^{n}$ as
shown below, we can use the laws of logarithms to find the values of k and n.
To begin, take logs of both sides of the exponential equation.

$y=k x^{n}$
$y=k x^{n}$

This gives a straight line graph!

$\log y=n \log x+\log k$

Note: the base is not important, as long as the same base is used on both sides.
$=m x+C$

b) Hence express y in terms of x. $\log _{10} y+\log _{10} x=0.903$ $\log _{16}(y x)=0.903$
$y x=10^{0}$
$y=\frac{8}{x}$

Example 14: Data are recorded from an experiment and the graph opposite is produced.
a) Find the equation of the line in terms of $\log _{10} x$ and $\log _{10} y$.

$$
M=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
m=\frac{0.903-0}{0-0.9 c 3}
$$

$$
m=-1 .
$$

$\log _{10} y=-1 \times \log _{1} x+0.903$
$\operatorname{los} 10 y=-\log _{10} x+0.903$.

Example 15: The data below are plotted and the graph shown is obtained

x	0	1	2	3	4
$\log _{10} y$	0.602	1.079	1.556	2.033	2.510
a) Express $\log _{10} y$ in terms of x.					

b) Hence express y in terms of x.

Related Graphs of Exponentials and Logs	
$y=e^{x}+\mathrm{a}$	$y=\ln (x+a)$
 $y=e^{x}+a$ is obtained by sliding $y=e^{x}$: Vertically upwards if $a>0$ Vertically downwards if a<0	 $y=\ln (x+a)$ is obtained by sliding $y=\ln x$ Horizontally left if $a>0$ Horizontally right if $a<0$

$y=e^{(x+a)}$
$\xrightarrow{\longrightarrow}$

$y=k \ln x$

Example 16: The graph of $y=\log _{4} x$ is shown. On the same diagram, sketch:
a) $y=\log _{4} 4 x$
b) $y=\log _{4}\left(\frac{1}{4 x}\right)$

Past Paper Example 1:
a) Show that $x=1$ is a root of $x^{3}+8 x^{2}+11 x-20=0$, and hence factorise $x^{3}+8 x^{2}+11 x-20$ fully
b) Solve $\log _{2}(x+3)+\log _{2}\left(x^{2}+5 x-4\right)=3$

Past Paper Example 2: Variables x and y are related by the equation $y=k x^{n}$.

The graph of $\log _{2} y$ against $\log _{2} x$ is a straight line through the points $(0,5)$ and $(4,7)$, as shown in the diagram.

Find the values of k and n.

Past Paper Example 3: The concentration of the pesticide Xpesto in soil is modelled by the equation:
P_{0} is the initial concentration
$P_{t}=P_{0} e^{-k t} \quad$ where: P_{t} is the concentration at time t
t is the time, in days, after the application of the pesticide
a) Once in the soil, the half-life of a pesticide is the \mid b) Eighty days after the initial application, what is time taken for its concentration to be reduced to
f the half-life of Xpesto is 25 days, find the value f k to 2 significant figures

Past Paper Example 4: Simplify the expression $3 \log _{e} 2 e-2 \log _{e} 3 e$ giving your answer in the form $A+\log _{e} B-\log _{e} C$, where A, B and C are whole numbers.

$$
\begin{aligned}
& \overrightarrow{3 \operatorname{loge} 2 e}-\overrightarrow{2 \log _{e} 3 e} \\
& \operatorname{loge}(2 e)^{3}-\log c(3 e)^{2} \\
& \operatorname{loge} 8 e^{3}-\operatorname{loge} 9 e^{2} \\
& \operatorname{loge} 8+\operatorname{loge} e^{3}-\left(\operatorname{loge} 9+\log e^{2}\right) \quad y=10_{p_{x}}^{p x+Q} Q \\
& \log _{e} 8+\log _{e}{ }^{3}-\log _{e} 9-\log _{e} e^{2} \\
& \text { loge } 8+3 \text {-loge } 9 \text { - } 2 \\
& 1+\text { loge } 8-l \text { loge } 9 \\
& 4^{x}=10^{p x} \text { ps } \\
& \operatorname{loge} 4^{x}=\operatorname{loge} 10 \\
& x \times \operatorname{loge} 4=P x \times \text { loge } 10 \\
& P=\frac{x x \times \operatorname{loge} 4}{7 \times \operatorname{lose} 10} \\
& p=0.6 \\
& \text { state the gradient and } \mathrm{y} \text {-intercept of this line. } \\
& Q=\frac{\text { loge } 3}{\operatorname{loge} 10} \\
& Q=0.48 \text {. } \\
& \begin{array}{l}
\text { graduate }=0.6 . \\
y \text {-nt }=0.68 .
\end{array}
\end{aligned}
$$

Past Paper Example 5: Two variables x and y satisfy the equation $y=3\left(4^{x}\right)$.
A graph is drawn of $\log _{10} y$ against x. Show that its equation will be of the form $\log _{10} y=P x+Q$, and

