Calculate the values of k and a.

$\overline{}$		
1	Show that $(x-1)$ is a factor of $f(x) = 2x^3 + x^2 - 8x + 5$. Hence fully factorise $f(x)$ fully.	
2	Express $x^2 + 8x + 3$ in the form $(x + p)^2 + q$ and state the coordinates of the turning point of the parabola.	
3	Evaluate: $log_5 2 + log_5 50 - log_5 4$	
4	What is the solution of the equation $2sinx - \sqrt{3} = 0 \text{ where } \frac{\pi}{2} \le x \le \pi ?$	
5	Given that $0 \le a \le \frac{\pi}{2}$ and $sina = \frac{3}{5}$, find an expression for $sin(x + a)$.	
6	If = $4x^3 + 5x^2 - 3x + 2$, find $\frac{dy}{dx}$.	
7	Find the coordinates of the turning points of the curve with equation $y = x^3 - 3x^2 - 9x + 12$ and determine their nature.	
8	Find $\int (2x^{-4} + \cos 5x) dx.$	
9	$\frac{dy}{dx} = 8x - 3. \text{ If } y = 7 \text{ when } x = 2,$ find an equation for y.	
10	The expression $\sqrt{3}sinx^{\circ} - cosx^{\circ}$ can be written in the form $ksin(x-a)^{\circ}$, where $k>0$ and $0 \le a < 360$.	

Show that (x - 1) is a factor of $x^3 - 3x + 2$. Hence or otherwise factorise $x^3 - 3x + 2$ fully.

22 $2x^2 + 4x + 7 \text{ is expressed in the form}$ $2(x+p)^2 + q. \text{ What is the value of } q.$

23 If $log_412 - log_4x = log_46$, what is the value of x?

24 Solve $2\cos x = \sqrt{3}$ for x, where $0 \le x < 2\pi$.

If the exact value of cosx is $\frac{1}{\sqrt{5}}$, find the exact value of cos2x.

Given that $f(x) = (4 - 3x^2)^{\frac{-1}{2}}$ on a suitable domain, find f'(x).

Find the coordinates of the stationary points on the curve $f(x) = x^3 - 3x + 2$ and determine their nature.

Find $\int \left(4x^{\frac{1}{2}} + x^{-3}\right) dx$, where x > 0.

The graph of y = f(x) passes through the point $\left(\frac{\pi}{9},1\right)$. If $f'(x) = \sin(3x)$ express y in terms of x.

30 Write sinx - cosx in the form ksin(x - a) stating the values of k and a where k > 0 and $0 \le a \le 2\pi$.

32 The diagram shows the graph of y = f(x) where f is a logarithmic function. What are the values of a and b for $(x) = log_a(x - b)$?

- The vectors $\mathbf{u} = \begin{pmatrix} k \\ -1 \\ 1 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} 0 \\ 4 \\ k \end{pmatrix}$ are perpendicular. What is the value of k?
- **34** D, E and F have coordinates (10, -8, -15), (1, -2, -3) and (-2, 0, 1) respectively. Show that D, E and F are collinear and find the ratio in which E divides DF.
- Prove that $\frac{\cos^3 x}{1-\sin^2 x} = \cos x.$
- The line L passes through the point (-2, -1) and is parallel to the line with equation 5x + 3y 6 = 0. What is the equation of L?
- Triangle PQR has vertices at P(-3,-2), Q(-1,4) and R(3,6). PS is a median. What is the gradient of PS?
- The diagram shows a circle, centre (2, 5) and a tangent drawn at the point (7, 9). What is the equation of this tangent?

- A sequence is generated by the recurrence relation $u_{n+1}=0.4u_n-240$. What is the limit of this sequence as $\rightarrow \infty$?
- **40** Calculate the shaded area enclosed by the curve $y = x^3(3 x)$ and the x-axis between x = 0 and x = 3.

41 The graph has an equation of the form y = k(x - a)(x - b). What is the equation of the graph?

42

For what values of x is $6 + x - x^2 < 0$?

43

Express $log_a 25 + log_a 4 - log_a 20$ as the logarithm of a single number.

44

Solve cos2x - 3cosx + 2 = 0 for $0 \le x < 360$.

The diagram shows two rightangled triangles with sides and angles given. What is the value of $\sin(p+q)$?

46

What is the derivative of $(x^3 + 4)^2$?

The point P(5, 12) lies on the curve with equation $y = x^2 - 4x + 7$. Find the equation of the tangent to the curve.

48 Find $\int 4 \sin(2x + 3) dx$.

49 Find $\int_{-2}^{2} (x+1)^2 dx$.

50

Write $2sinx^{\circ} + 3cosx^{\circ}$ in the form ksin(x-a), for k>0 and $0 \le a \le 360$.

What is the value of u_3 ?

A sequence is defined by the recurrence relation $u_{n+1}=2u_n+3$ and $u_0=1$.

59

Show that x = 1 is a root of $x^3 + 8x^2 + 11x - 20 = 0$.

Hence factorise $x^3 + 8x^2 + 11x - 20$ fully.

62

The roots of the equation $kx^2 - 3x + 2 = 0$ are equal.

Calculate the value of k.

63

Evaluate $log_2 \frac{1}{16}$.

64

Solve the equation $3\cos 2x + \cos x = -1$ in the interval $0 \le x \le 360$.

The diagram shows a right-angled triangle with sides and angles marked. What is the value of cos2a?

66 $A = 2\pi r^2 + 6\pi r$.

What is the rate of change of A with repect to r when r=2?

67

Find the equation of the tangent to the curve $y = x^3 - 3x^2 + 2x$ at the point where x =1.

68 Find (

Find $\int \frac{1}{3x^4} dx$, where $x \neq 0$.

69

Evaluate $\int_0^{\frac{\pi}{2}} \sin 2x + \cos 2x \ dx$.

70

Write $3\cos x^{\circ} + 4\sin x^{\circ}$ in the form $k\cos(x+a)$ for k > 0 and $0 \le x \le 360$

The diagram shows the graph with equation $x = h(x - 1)^{2}(x + t)$

 $y = k(x-1)^2(x+t).$

What are the values of *k* and *t*?

82

What is the solution of $x^2 + 4x > 0$, where x is a real number?

83

Find x if $log_x 6 - 2log_x 4 = 1$.

84

Solve the equation sin2x - cosx = 0 in the interval $0 \le x \le 180$.

85

If a and b are acute angles such that $sina = \frac{4}{5}$ and $sinb = \frac{5}{13}$, find the value of sin(a + b).

86

If $f(x) = \frac{1}{\sqrt[5]{x}}$, $x \neq 0$, what is f'(x)?

87 Find the equation of the tangent to the curve with equation $y = x^3 + 2x^2 - 3x + 2$ at the point where x = 1.

88

Find $\int (2x-1)^{\frac{1}{2}} dx$ where $x > \frac{1}{2}$.

89

Find $\int_0^1 \frac{dx}{(3x+1)^{\frac{1}{2}}}$

89

Express $3cosx^{\circ} + 5sinx^{\circ}$ in the form $kcos(x - a^{\circ})$ where k>0 and $0 \le a \le 90$.

The functions f and g are defined by $f(x) = x^2 + 1$ and $g(x) = 3x - 4$, on the set of real numbers. Find $f(g(x))$ and $g(f(x))$.	
72 The diagram shows a sketch of a trig function whose equation is of the form $y = a\sin(bx) + c$. Determine the values of a, b and c.	
Show that the points $A(-7, -8, 1)$, $T(3, 2, 5)$ and $B(18, 17, 11)$ are collinear. Find the ratio in which T divides AB.	
P,Q and R have coordinates $(1,3,-1)$, $(2,0,1)$ and $(-3,1,2)$ respectively. Express the vectors \overrightarrow{QP} and \overrightarrow{QR} in component form. Hence or otherwise find the size of angle PQR.	
95 Find the exact value TAN $\frac{7\pi}{4}$	
Find the equation of the line which passes through the point (-1, 3) and is perpendicular to the line with equation $4x + y - 1 = 0$.	
A triangle has vertices A(-3, 1), B(4, 3) and C(6, -5). Find the equation of the altitude BP.	
98 A circle C_1 has equation $x^2 + y^2 + 2x + 4y - 27 = 0$. Write down the centre and calculate the radius of C_1 .	
A sequence is generated by the recurrence relation $u_{n+1}=\frac{1}{4}u_n+7$, with $u_0=-2$. What is the limit of this sequence as $n\to\infty$?	
Calculate the shaded area shown in the diagram.	

A function f is defined on the set of real numbers by $f(x) = x^3 - x^2 + x + 3$. What is the remainder
when $f(x)$ is divided by $(x-1)$?

102

If $x^2 - 8x + 7$ is written in the form $(x - p)^2 + q$, what is the value of q?

103

Given that $log_{10}x = 3log_{10}y + log_{10}2$, express x in terms of y.

104

Solve the equation $2\cos 3x = 1$, for $0 \le x \le 360$

105

The diagram shows a rightangled triangle with sides and angles marked. Find the value of sin2x.

106

If $s(t) = t^2 - 5t + 8$, what is the rate of change of s with respect to t when t = 3?

107 The diagram shows part of the graph of the curve $y = 2x^3 - 7x^2 + 4x + 4$. Find the *x*-coordinate of the maximum

108

Find $\int x(3x+2)dx$.

turning point.

109

Find f(x) given that $f'(x) = 2 - \frac{1}{x^2}$ and f(1) = 8.

110

Write $1.5cosx^{\circ} + 2sinx^{\circ}$ in the form $kcos(x + a)^{\circ}$, where $0 \le a \le 180$.

A function f is defined on a suitable domain by $f(x) = \frac{x+2}{x^2 - 7x + 12}.$

What value(s) of *x* cannot be in this domain?

112

The graph of y = f(x) is shown . Sketch the graphs of y = -f(x) and y = -f(x) + 3.

113

The point Q divides the line joining P(-1, -1, 0) to R(5, 2, -3) in the ratio 2: 1. Find the coordinates of Q.

114

and v =are perpendicular,

what is the value of t?

115

Prove the identity:

 $2\cos^2 x - 1 = 1 - 2\sin^2 x$

116

A line makes an angle of 45° with the positive direction of the x-axis. What is its gradient?

117

Triangle ABC has vertices A(-1, 6), B(-3, -2)and C(5, 2). Find the equation of the line q, the perpendicular bisector of BC.

118

The point P(2, 3) lies on the circle

$$(x+1)^2 + (y-1)^2 = 13.$$

Find the equation of the tangent at P.

119

A sequence is defined by the recurrence relation $u_{n+1} = \frac{1}{3}u_n + 1$, with $u_2 = 15$.

What is the value of u_4 ?

120 Calculate the area enclosed between the curves

$$y = x^2 - x + 3$$
 and $y = 3 + 2x - x^2$.

121

The diagram shows the graph of a cubic. What is the equation of this

122

cubic?

If f(x) = (x - 3)(x + 5), for what values of x is the graph of y = f(x) above the x-axis?

123 Simplify $5log_82 + log_84 - log_816$

Solve $4\sin^2 x = 3$ for $0 \le x \le 360$.

125 If $cosA = \frac{5}{13}$ and $sinB = \frac{4}{5}$, show that $\sin(A+B) = \frac{56}{65}$

126

Given that f(x) = 4sin3x, find f'(0).

A curve has equation $y = x - \frac{16}{\sqrt{x}}$, x > 0.

Find the equation of the tangent at the point where x = 4.

128

Find $\int (1 - 6x)^{-\frac{1}{2}} dx$ where $x < \frac{1}{6}$.

129
$$\frac{dy}{dx} = 6x^2 - 4x + 3.$$
If $y = 5$ when $x = 1$, find an equation for y .

130

Express $8\cos x^{\circ} - 6\sin x^{\circ}$ in the form $k\cos(x+a)^{\circ}$ where k > 0 and 0 < a < 360.

131
$$f(x) = 3 - x$$
 and $g(x) = \frac{3}{x}, x \neq 0$.

Find
$$p(x) = f(g(x))$$
.

If
$$q(x) = \frac{3}{3-x}$$
, $x \neq 3$, find $p(q(x))$ in its simplest form.

The diagram shows
$$y = f(x)$$
. Sketch the graphs of $y = -2f(x)$ and $y = f(x - 3)$.

133

Show that the points P(3, 2, 6), Q(5, -2, 10) and R(9, -10, 18) are collinear.

134

Find the magnitude between the origin and the point 'a' (3, 4, 0)

135

Prove the identity:

$$cosAtanA = sinA.$$

136

Find the equation of the straight line through (1, -7) perpendicular to the line y - 2x = 30.

137

Find the equation of the median from C for a triangle with vertices A(1, -7), B(-4, 7) and C(-1, 3).

138

Find the equation of the tangent to the circle $x^2 + y^2 - 10y - 43 = 0$ at the point (2, -3).

139

A sequence is generated by the recurrence relation $u_{n+1}=0.4u_n-30.$

What is the limit of the sequence as $\rightarrow \infty$?

140

Calculate the shaded area shown in the diagram.

141

Show that (x - 4) is a factor of $x^3 - 5x^2 + 2x + 8$. Hence, fully factorise and solve $x^3 - 5x^2 + 2x + 8$.

142

Solve $6 - x - x^2 < 0$

143

Before a forest fire was brought under control, the spread of the fire was described by a law of the form $A=A_0e^{kt}$ where A_0 is the area covered by the fire when it was first detected and A is the area covered by the fire t hours later. If it takes 1.5 hours for the area of the forest fire to double, find the value of the constant t.

144

Solve $2\sin(2x - 60)^{\circ} = 1$ for $0 \le x \le 360$.

145

Using $75^\circ = 45^\circ + 30^\circ$, show that $sin75^\circ = \frac{\sqrt{6} + \sqrt{2}}{4}$.

146

If $y = 3x^{-2} + 2x^{\frac{3}{2}}$, x > 0, determine $\frac{dy}{dx}$.

147

The parabola with equation $y = x^2 - 14x + 53$ has a tangent at the point P(8, 5). Find the equation of this tangent.

148

Find
$$\int \frac{(x^2-2)(x^2+2)}{x^2} dx$$
, $x \neq 0$

149

The curve y = f(x) is such that $\frac{dy}{dx} = 4x - 6x^2$. The curve passes through the point (-1, 9). Express y in terms of x.

150

Express $3cosx^{\circ} + 4sinx^{\circ}$ in the form $kcos(x - a)^{\circ}$ Hence, solve $3cosx^{\circ} + 4sinx^{\circ} = 5$

$$f(x) = 8x^2 - 5$$
 and $g(x) = 5 + x$

Find
$$f(g(x))$$
 and $g(f(x))$.

152 The diagram shows the graph of a function y = f(x).

Sketch the graphs of:

$$y = f(x - 4)$$
 and $y = 2 + f(x - 4)$.

Show that A, B and C are collinear, stating the ratio

154) is the point (-1, 2, -1) and Q is (3, 2, -4). Write down PQ in component form. Calculate the length of \overrightarrow{PQ} .

Find the components of a unit vector which is parallel to \overrightarrow{PQ} .

155

Prove the identity:

$$\cos^2 Q \tan^2 Q = 1 - \cos^2 Q$$

The point A has coordinates (7, 4). The straight lines with equations x + 3y + 1 = 0 and

2x + 5y = 0 intersect at B.

Find the gradient of AB.

157

A triangle has vertices A(5, 5), B(-10, 0) and C(0, -10). Find the equation of the altitude from

A.

158

A circle has centre C(-2, 3) and passes through P(1, 6). Find the

equation of the circle.

159 A sequence is defined by the recurrence relation

 $u_{n+1} = 0.8u_n + 12$, $u_0 = 4$.

State why this sequence has a limit and find this limit.

160

Calculate the area between the line
$$y = x + y = 18$$
 and the

curve
$$y = x^2 - 8x + 18$$
.

161 Show that (x + 2) is a factor of $f(x) = x^3 - 2x^2 - 4x + 8$ and hence fully factorise f(x).

162

Calculate the discriminant of the quadratic equation $2x^2 + 4x + 5 = 0$

163

Solve the equation $log_4(5-x) - log_4(3-x) = 2$, x < 3.

164

Find all the values of x in the interval $0 \le x \le 2\pi$ for which $tan^2(x) = 3$.

165

Show that the exact value of cos2x is $\frac{7}{25}$.

166

If $y = 3\cos^4 x$, find $\frac{dy}{dx}$.

167
A curve has equation $y = x^3 - 3x^2 - 9x + 12$. Find the coordinates of the stationary points of this curve and determine their nature.

168

Find
$$\int \frac{4x^3-1}{x^2} dx$$
, $x \neq 0$.

169

Find the value of $\int_0^2 \sin(4x+1) dx$.

170

A curve has equation y = 7sinx - 24cosx. Express 7sinx - 24cosx in the form ksin(x - a)where k > 0 and $0 \le a \le \frac{\pi}{2}$.

$$f(x) = 3x - 1 \text{ and } g(x) = \frac{1}{x+1}$$

Find $f(g(x))$ and $g(f(x))$.

State a suitable domain for g(f(x)).

172 The diagram shows the graph y = g(x).

- a. Sketch y = -g(x)
- b. Sketch y = 3 g(x)

173

If
$$\mathbf{f} = 3\mathbf{i} + 2\mathbf{k}$$
 and $\mathbf{g} = 2\mathbf{i} + 4\mathbf{j} + 3\mathbf{k}$,
Find $|\mathbf{f} + \mathbf{g}|$.

174

Express the vectors \overrightarrow{TA} and \overrightarrow{TB} in component

Calculate the angle between \overrightarrow{TA} and \overrightarrow{TB} .

175

Prove the identity:

$$(cosP^{\circ} + sinP^{\circ})^2 = 2sinP^{\circ}cosP^{\circ} + 1$$

176

Find the equation of the line ST, where T is the point (-2, 0) and angle STO is 60° .

177

Triangle ABC has vertices A(-1, 12), B(-2, -5) and C(7, -2). Find the equation of the altitude AE.

178

Show that the line with equation y = 6 - 2x in a tangent to the circle with equation $x^2 + y^2 + 6x - 4y - 7 = 0$ and find the coordinates of the point of contact of the tangent and the circle.

179 A sequence is defined by the recurrence relation $u_{n+1} = 0.2u_n + 5$ with $u_8 = 20$. Calculate u_{10} .

180

Calculate the area enclosed between the curve $y = x^2 - 6x$ and the x-axis.

181

Show that (3x + 1) is a factor of $g(x) = 3x^3 + 4x^2 - 5x - 2$. Hence fully factorise g(x).

182

Solve $1 - 2x - 3x^2 > 0$, where x is a real number.

183

Solve the equation $log_2(x+1) - 2log_23 = 3$.

184

Solve 2tan3x + 2 = 0 for $0 \le x \le 360$.

185_{A right-angled triangle has} sides and angles as shown in the diagram. What is the value of sin2a?

186

Given that $y = \sin(x^2 - 3)$, find $\frac{dy}{dx}$.

187

A curve has equation $y=3x^2-x^3$. Find the coordinates of the stationary points on this curve and determine their nature.

188

Find $\int (2x+9)^5 dx$

189

Find $\int_0^2 \sqrt{4x+1} \, dx$.

190

Express $f(x) = \sqrt{3}cosx + sinx$ in the form ksin(x+a), where k > 0 and $0 < a < \frac{\pi}{2}$.

A function f, defined on a suitable domain, is given by $f(x) = \frac{6x}{x^2 + 6x - 16}$.

What restrictions are there on the domain of *f*?

192 The diagram shows part of the graph of y = f(x). Sketch the graph of y = 2f(x) + 1

193

$$\boldsymbol{p} = -\boldsymbol{i} + 3\boldsymbol{j} + 4\boldsymbol{k}$$
 and $\boldsymbol{q} = 7\boldsymbol{i} - \boldsymbol{j} + 5\boldsymbol{k}$

- a) Express \overrightarrow{PQ} in component form.
- b) Find the length of PQ.

194

The vectors $oldsymbol{u} = \left(egin{array}{c} 1 \\ k \end{array} \right)$ and $oldsymbol{v} = 1$ are perpendicular.

What is the value of k?

195

Show that:

$$(1 + 2sinx)(1 - 2sinx) = 4cos^2x - 3$$

196

Find the equation of the line through the point (-1, 4) which is parallel to the line with equation 3x - y + 2 = 0.

197

A triangle has vertices P(-2, 2), Q(6, 6) and R(6, -4) Find the equation of the perpendicular bisector of PR.

198

Find P and Q, the points of intersection of the line y = 3x - 5 and the circle C_1 with equation $x^2 + y^2 + 2x - 4y - 15 = 0.$

199

A sequence is defined by the recurrence relation $u_{n+1} = \frac{1}{4}u_n + 16$, $u_0 = 0$.

Calculate the values of u_1 , u_2 , and u_3 .

200

Calculate the shaded area between the curve $y = -x^2 + 7x - 10$ and the x-axis.

Ques 1 - 20 1. f(x) = (x-1)(2x+5)(x-1)2. $(x + 4)^2 - 13$ Min T.P at (-4, -13)

4.
$$x = \frac{2\pi}{3} \text{ for } \frac{\pi}{2} \le x \le \pi$$

5.
$$\sin(x + a) = \frac{4}{5}\sin x + \frac{3}{5}\cos x$$

$$6. \ \frac{dy}{dx} = 12x^2 + 10x - 3$$

7. Max T.P at
$$(-1, 17)$$
 and Min T.P. at $(3, -15)$

8.
$$\frac{-2x^{-3}}{3} + \frac{1}{5}\sin 5x + C$$

9.
$$y = 4x^2 - 3x - 3$$

10.
$$k = 2$$
 and $a = 30^{\circ}$

11.
$$x \le 3$$

12.
$$a = 2$$
 $b = 3$

15.
$$sin60 = \frac{\sqrt{3}}{2} tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$$

16.
$$m = -1$$

17.
$$y = -3x + 10$$

17.
$$y = -3x + 10$$

18. $(x + 7)^2 + (y - 6)^2 = 36$
19. $u_{12} = 8.7$

19.
$$u_{12} = 8.7$$

20. Area =
$$32$$
 square units

$$21. f(x) = (x-1)(x+2)(x-1)$$

22.
$$q = 5$$

23.
$$x = 2$$

24.
$$x = \frac{\pi}{6}, \frac{11\pi}{6}$$

$$24. \ x = \frac{\pi}{6}, \frac{11\pi}{6}$$
$$25. \ \cos 2x = \frac{-3}{5}$$

$$26. f'(x) = 3x(4 - 3x^2)^{\frac{1}{2}}$$

26.
$$f'(x) = 3x(4 - 3x^2)^{\frac{-3}{2}}$$

27. Max T.P. at (-1, 4) and Min T.P. at (1, 0)

$$28. \frac{8}{3} x^{\frac{3}{2}} - \frac{1}{2} x^{-2} + C$$

$$28. \frac{8}{3}x^{\frac{3}{2}} - \frac{1}{2}x^{-2} + C$$

$$29. y = \frac{-1}{3}\cos 3x + \frac{7}{6}$$

30.
$$\sqrt{2}\sin{(x-\frac{\pi}{4})}$$

30.
$$\sqrt{2}\sin\left(x - \frac{\pi}{4}\right)$$

31. $f(g(x)) = 3x^2 - 5$ $g(f(x)) = 9x^2 + 6x - 1$

32.
$$a = 3$$
 $b = 3$

33.
$$k = 4$$

34.
$$\overrightarrow{DE} = 3\overrightarrow{EF}$$
 so \overrightarrow{DE} and \overrightarrow{EF} are parallel. E is a common point so D,E,F are collinear.

$$36. \ 3y + 5x = -13$$

37.
$$m_{PS} = \frac{7}{4}$$

$$38. \ 4y + 5x = 71$$

39.
$$L = -400$$

40. Area =
$$12\frac{3}{20}$$
 square units.

Ques 41 - 60 Ques 61 - 80

$$41. Y = 3(x-1)(x-4)$$

42.
$$x > 3$$
 $x < -2$

43.
$$log_a 5$$

44.
$$x = 0^{\circ}, 60^{\circ}, 300^{\circ}, 360^{\circ}$$

45.
$$\sin(p+q) = \frac{2+2\sqrt{5}}{3\sqrt{5}}$$

$$46. \frac{dy}{dx} = 6x^5 + 24x^2$$

$$47. y = 6x - 18$$

$$48. -2\cos(2x + 3) + C$$

49.
$$9\frac{1}{2}$$

50.
$$\sqrt{13}\sin(x-303.7)$$

$$53. \begin{pmatrix} 8 \\ -4 \\ -5 \end{pmatrix}$$

54.
$$x = 1$$

56.
$$m = \frac{1}{\sqrt{3}}$$

57.
$$3y - x - 8 = 0$$

58. Centre
$$(-4, -2)$$
 radius= $\sqrt{58}$

59.
$$u_3 = 29$$

$$61. (x-1)(x+4)(x+5)$$

$$62. k = \frac{9}{8}$$

62.
$$k = \frac{3}{8}$$

$$63. -4$$

64.
$$x = 60^{\circ}, 132^{\circ}, 228^{\circ}, 300^{\circ}$$

65.
$$\cos 2a = \frac{7}{25}$$

66.
$$14\pi$$

67.
$$y = -x + 1$$

$$68. \frac{x^{-3}}{-9} + C$$

70.
$$5\cos(x + 306.9^{\circ})$$

70.
$$5\cos(x + 306.9^{\circ})$$

71. $f(g(x)) = x^2 + 8x + 19 \ g(f(x)) = x^2 + 7$

72.
$$q = 13$$

74.
$$\frac{9}{3}$$

75.
$$120^{\circ} = \frac{3\pi}{4}$$
 and $\frac{2\pi}{3} = 120^{\circ}$

77.
$$y = 4x + 4$$

78.
$$J(-1, -2)$$
 $K(1, 2)$

79.
$$l = 100/3$$

80.
$$Area = \frac{27}{4}$$
 square units

60. Area = $57\frac{1}{c}$ square units	
Ques 81 - 100	Ques 101 - 120
81. $K = -2$ and $t = -5$	1014
82. $x > 0$ $x < -4$	102.q = -9
83. $x = \frac{3}{9}$	$103x = 2y^3$
0	$104.x = 20^{\circ}, 100^{\circ}, 140^{\circ}, 220^{\circ}, 260^{\circ}, 340^{\circ}$
$84. \ x = 30^{\circ}, 90^{\circ}, 150^{\circ}$	$105.\sin 2x = \frac{4}{5}$
$85. \sin(a+b) = \frac{63}{65}$	106. 1
$86. f'(x) = -\frac{1}{5}x^{-\frac{6}{5}}$	4
3	107Max T.P. when $x = \frac{1}{3}$
$87. \ y = 4x - 2$	$108.x^3 + x^2 + c$
$88.\frac{(2x-1)^{\frac{3}{2}}}{2}+C$	$109.f(x) = 2x + \frac{1}{x} + 5$ $110.2.5\cos(x + 306.9)^{\circ}$ $111.x \neq 3 \text{ and } x \neq 4$
3	$110.2.5\cos{(x+306.9)}^{\circ}$
89. $\frac{2}{3}$	$111.x \neq 3$ and $x \neq 4$
90. $\sqrt{34}\cos(x-59.0)^{\circ}$ 91. $f(g(x)) = 9x^2 - 24x + 17$ $g(f(x)) = 3x^2 - 1$	112Correct shape drawn and labelled with
91. $f(g(x)) = 9x^2 - 24x + 17$ $g(f(x)) = 3x^2 - 1$	(0,3), (3,1), (5,3)
92. $a = 4$ $b = 2$ $c = 1$	113.Q(3,1,-2)
93. 3:2	114.t=-3
94. $\theta = 72^{\circ}$	115.Proof.
951	116.m = 1
$96. \ y = \frac{1}{4}x + \frac{13}{4}$	117.y = -2x + 2
97. $y = \frac{3}{3}x - 3$	$118.y = -\frac{3}{2}x + 6$
L	$119.u_4 = 3$
98. Centre $(-1, -2)$ Radius $\sqrt{32}$	•
99. $L = \frac{28}{3}$	120. 9/8
100Area = 9 square units	
Ques 121 - 140	Ques 141 - 160
$121. \ y = -x(x+1)(x-2)$	141.(x-4)(x-2)(x+1)
122. $x < -5$ and $x > 3$	142.x < -3 and x > 2
123.1	143.k = 0.46
124. <i>x</i> = 60°, 120°, 240°, 300° 125. Proof.	$144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ 145. Proof.
126.12	4
$127. \ y = 2x - 12$	$146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$
$128 \frac{(1-6x)^{\frac{1}{2}}}{2} + C$	147.y = 2x - 11
$128 \frac{3}{3} + 6$ $129. y = 2x^3 - 2x^2 + 3x + 2$	$148.\frac{x^3}{3} + 4x^{-1} + C$
$129. \ y = 2x^{\circ} - 2x^{-1} + 3x + 2$ $130. \ 10\cos(x + 36.9)^{\circ}$	$149.\dot{y} = 2x^2 - 2x^3 + 5$ 150.x = 53.1°.413.1°
131. $p(x) = 3 - \frac{3}{x}$ and $p(q(x)) = x$	$150.x = 53.1^{\circ}, 413.1^{\circ}$ $151.f(g(x)) = 8x^{2} + 80x + 195 \ g(f(x)) = 8x^{2}$
132. $y = -2f(x)$ passing through (-6, 0), (1, 14), (3, 0) and	151. $f(g(x)) = 6x^2 + 60x + 195 \ g(f(x)) = 6x$ 152. $g(x) = 6x + 60x + 195 \ g(f(x)) = 6x$
y = f(x - 3) passing through (-3, 0), (1, 14), (3, 0) and $y = f(x - 3)$ passing through (-3, 0), (4, -7), (6, 0)	f(x-4) passing through (0,7), (5, $a+2$)
133. $\overrightarrow{QR} = 2\overrightarrow{PQ}$ and Q is a common point so P, Q, R are	153.AB:BC = 1:2
collinear.	$\left(\frac{4}{5}\right)$
134. 5	154. Unit vector = $\begin{pmatrix} \frac{5}{5} \\ 0 \\ \frac{-3}{3} \end{pmatrix}$
135.Proof.	$\left\langle \frac{-3}{5} \right\rangle$
$136. \ y = -\frac{1}{2}x + \frac{13}{2}$	155.Proof.
$137. \ y = 6x + 9$	156.m=3
$138. \ y = \frac{1}{4}x - \frac{7}{2}$	$157.y = x$ $158.(x + 2)^2 + (y - 2)^2 - 18$
	$158.(x+2)^2 + (y-3)^2 = 18$
139.L = -50	159 L = 60
$139.L = -50$ $140.Area = \frac{20}{3} \text{ square units}$	159. $L = 60$ 160. $Area = \frac{343}{6}$ square units

Ques 161 - 180	Ques 181 - 200
$\frac{\text{Ques 101 - 180}}{161.(x+2)(x-2)(x-2)}$	$\frac{200}{181.3(3x+1)(x+2)(x-1)}$
$162.b^2 - 4ac = -24$	$1821 < x < \frac{1}{2}$
	3
$163.x = \frac{43}{15}$ $164.x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$	183.x = 71
$164.x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$	$184. \ x = 45^{\circ}, 105^{\circ}, 165^{\circ}, 225^{\circ}, 285^{\circ}, 345^{\circ}$
165.Proof.	$185.sin2a = \frac{15}{17}$
$166.\frac{dy}{dx} = -12sinxcos^3x$	$186. \frac{dy}{dx} = 2x\cos(x^2 - 3)$
167. Max T.P at (-1, 17). Min T.P at (3, -15).	187.Min T.P at (0,0) Max T.P at (2,4)
$168.2x^2 + \frac{1}{x} + C$	
169.0.363 <i>radians</i>	$188. \frac{(2x+9)^6}{12} + C$ $189. \frac{13}{2}$
$170.25\sin(x - 1.287)$ (in radians)	3
$171.f(g(x)) = \frac{-x+2}{x+1} g(f(x)) = \frac{1}{2x}$	$190.2\sin(x+\frac{\pi}{3})$
172.y = -g(x) passes through $(a, -2), (0, -1), (b, -3)$	191. $x \neq -8$, $x \neq 2$
y = 3 - g(x) passes through $(a, 5), (0, 2), (b, 0)$	192. $y = 2f(x) + 1$ passes through $(0, 1), (2, 7), (5, 1)$
173. $ f + g = \sqrt{66}$	193. $\overrightarrow{PQ} = \begin{pmatrix} 8 \\ -4 \end{pmatrix} \overrightarrow{PQ} = 9$
$174. \theta = 50.9$	175. $I Q = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$ $ I Q = 7$
175.Proof.	194. $k = \frac{6}{7}$
$176.y = \sqrt{3}x + 2\sqrt{3}$	195.Proof.
177.y = -3x + 9	$196. \ y = 3x + 7$
178. Point of contact is (1, 4)	$197. \ 3y = 4x - 11$
$179.u_9 = 9 u_{10} = 6.8$	198. $P(1, -2)$ $Q(3, 4)$
180.Area = 36 square units	199. $u_1 = 16$ $u_2 = 20$ $u_3 = 21$
	200. Area = $\frac{9}{2}$ square units