# N5 Computing Science Data Representation Summary Notes

## **Units of storage**

The following units are used when referring to file sizes or storage capacity.

Bit – a single binary digit, 1 or 0.

• Byte – 8 bits, e.g. 10010001

Kilobyte (KB) - 1024 bytes
Megabyte (MB) - 1024 KB
Gigabyte (GB) - 1024 MB
Terabyte (TB) - 1024 GB
Petabyte (PB) - 1024 TB

# Storage of program instructions

Instructions are stored using the processor's own language called **machine code**. Different processors (or families of processors) use different machine code.

# **Positive integer storage**

Every type of data in a computer system is stored using the binary number system, where 1 is represented by ON and 0 is represented by OFF.

Positive integers (whole numbers) can be represented as shown below.

| Examples (8 bit) |    |    |    |   |   |   |   |   |     |
|------------------|----|----|----|---|---|---|---|---|-----|
| 128              | 64 | 32 | 16 | 8 | 4 | 2 | 1 |   |     |
| 0                | 1  | 0  | 1  | 1 | 0 | 1 | 1 | = | 91  |
| 1                | 1  | 1  | 1  | 1 | 1 | 1 | 1 | = | 255 |
| 1                | 0  | 0  | 0  | 0 | 0 | 1 | 0 | = | 130 |

- The **range of numbers** that can be stored depends on the number of bits available in memory to store it.
- The highest number that can be stored in n bits is  $2^n 1$  (e.g. 8 bits can store values from 0 up to  $2^8-1 = 256-1 = 255$ )

### Real number storage

Real numbers (numbers with a fractional part) are stored using the **floating point** system, which stores the **mantissa** and the **exponent**.

# **Example**

In the number  $0.10100001 \times 2^{1011}$ , the mantissa is 0.10100001 and the exponent is 1011.

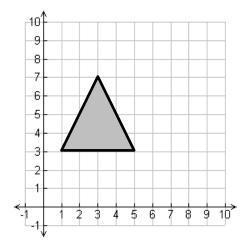
### **Character storage**

Text is converted into binary using a code, where each character is represented by a binary number.

• **ASCII** code converts each character into an 8 bit binary number. This allows for 256 different characters (2<sup>8</sup>=256).

# **Graphic storage – bitmapped**

A bitmap image is stored as an array of pixels, each number representing the colour of a pixel.


- If 2 bits are used then the graphic is a black and white image 1 represents black and 0 represents white
- The number of bits used to store the colour of each pixel is known as the **bit depth**.
- RGB (red, green and blue) colour codes are created by using 8 bits for each of the three primary colours (red, green and blue)
- **True colour** uses 24 bits per pixel (16 777 216 colours)

# **Graphics storage – vector**

Vector graphics are stored as a list of objects & attributes

# **Example**

- polygon(x1, y1, x2, y2, x3, y3, fill colour, line colour)
- polygon(1, 3, 3, 7, 5, 3, grey, black) would draw the shape below



|                                               | Bitmapped                                             | Vector                                                                    |  |  |
|-----------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|--|--|
|                                               | Manipulate at pixel level.                            | Manipulate at object level.                                               |  |  |
|                                               | Typically a larger file size.                         | Typically a small` file size                                              |  |  |
| File size is affected by resolution of image. |                                                       | File size increases as more objects are                                   |  |  |
|                                               | File sizes are fixed regardless of detail in graphic. | stored                                                                    |  |  |
|                                               | Becomes pixelated (blocky) when enlarged.             | Can be enlarged without affecting quality (it is resolution independent). |  |  |
|                                               | Ideal for photos and realistic images.                | Ideal for simple logos on websites, etc.                                  |  |  |

## Factors that affect file size

- Resolution
- Colour/bit depth (number of colours used)

### **Standard File Formats**

Standard file formats for graphics files are

| File Format | Compression | Animation | Transparency | Colour Depth          |
|-------------|-------------|-----------|--------------|-----------------------|
| JPEG        | lossy       | ×         | ×            | 24 = 16777216 colours |
| GIF         | lossless    | ✓         | ✓            | 8 = 256 colours       |
| PNG         | lossless    | ×         | ✓            | 24 = 16777216 colours |

# **Audio storage**

Sound is stored digitally by sampling the original analogue sound.

- **Sampling** means taking measurements of the signal. This process of digitising sound means that quality will be lost.
- **Sample frequency** is the number of times each second that the sound is sampled. Sample frequency is measured in Hertz (Hz). A frequency of 1Hz means one sample per second. The greater the sampling frequency, the better quality the sound but the larger the file size.

# Factors that affect file size & quality

 Sample rate – increasing the sample rate will increase the quality but this will also increase the file size

#### **Standard File Formats**

Standard file formats for audio files are

| <b>File Format</b> | Compression | Quality | File Size |
|--------------------|-------------|---------|-----------|
| MP3                | lossy       | High    | Small     |
| WAV                | lossless    | High    | Large     |