St Andrew's Academy

Mathematics Department

COURSE 1 TEXTBOOK

CONTENTS

BLOCK ONE PAGE 1
BLOCK TWO PAGE 45
BLOCK THREE PAGE 98
BLOCK FOUR PAGE 133

St Andrew's Academy

Mathematics Department

BLOCK ONE

Number	Algebra	Integers
- Place Value (including tenths, hundredths and thousandths). - Number to words. - Add/Subtract whole numbers - Multiply/Divide whole numbers - Multiply/Divide by 10, 100 and 1000. - Multiply/Divide by multiples of 10 . - Order of operations.	- Solving 1 and 2 step Equations.	- Negative number scale. - Ordering integers. - Coordinates in 4 quadrants. - Add/subtract integers. - Multiply/Divide Integers. - Integers in context.

Examples

Workout

Click here

Scan here

Question 1: Write these numbers in words
(a) 19
(b) 28
(c) 72
(d) 55
(e) 83
(f) 94

Question 2: Write these numbers in figures
(a) eighteen
(b) thirty-one
(c) forty-nine
(d) fifty-two
(e) eighty-seven
(f) ninety-three

Question 3: Write these numbers in words
(a) 105
(b) 112
(c) 140
(d) 168
(e) 271
(f) 333
(g) 498
(h) 704
(i) 620
(j) 857
(k) 985
(l) 586

Question 4: Write these numbers in figures
(a) two hundred and one
(b) one hundred and twenty-nine
(c) six hundred and forty
(d) nine hundred and eleven
(e) four hundred and fifty-two
(f) eight hundred and seventy-five

Question 5: Write these numbers in words
(a) 2004
(b) 3058
(c) 8020
(d) 9105
(e) 4700
(f) 2831
(g) 8349
(h) 10010
(i) 15512
(j) 23061
(k) 52724
(l) 89200

Question 6: Write these numbers in figures
(a) five thousand, one hundred
(b) two thousand, nine hundred and five
(c) nine thousand, five hundred and thirty-seven

Words and Figures

Videos 362 and 363 on www.corbettmaths.com
(d) eight thousand and thirty
(e) twelve thousand, two hundred and four
(f) forty thousand and ninety-two
(g) seventy-nine thousand, six hundred and twenty-six

Question 7: Write these numbers in words
(a) 500,000
(b) 3,000,000
(c) $1,251,000$
(d) $18,000,905$
(e) 9,208,071
(f) $2,133,394$
(g) 40,299,323
(h) 652,394,006

Question 8: Write these numbers in figures
(a) seven hundred and fifteen thousand
(b) three hundred thousand, five hundred and twenty-nine
(c) nine hundred and thirteen thousand, one hundred and eighty-two
(d) seven million, five hundred and two thousand, seven hundred and nineteen
(e) fifty million and twelve

Apply

Question 1: At a Yeovil Town football match, there are 4,137 spectators. Write 4,137 in words.

Question 2: The diameter of Mars is six thousand, seven hundred and seventy-nine kilometres.
Write six thousand, seven hundred and seventy-nine in figures.

Question 3: Write the values shown on each calculator in words.
(a)

(b)

(c)

Words and Figures

Videos 362 and 363 on www.corbettmaths.com

Question 4: Maxine has attempted her homework.
Explain the mistakes she has made.

Write these numbers in words
(a) 5400
(b) 2915
five thousand and four hundred
(c) 79,032
seventy-nine thousand, thirty-two
two thousand nine hundred and fifteen
(d) 100,408
one million, four hundred and eight

Question 5: Write down the answer to 125×100 in words

Question 6: Write down the answer to $9 \div 100$ in words

Answers

Click here

Scan here

Workout

Click here

Scan here

Question 1: Write down the value of underlined digit in each of the numbers below
(a) 548
(b) $\underline{9} 02$
(c) $62 \underline{3}$
(d) $\underline{3841}$
(e) $87 \underline{9} 02$
(f) 48213
(g) $3 \underline{9} 154$
(h) 24103
(i) $\underline{2} 94875$
(j) 940000
(k) 2500000
(l) 4970000000
(m) 0.53
(n) 0.27
(o) $1.39 \underline{5}$
(p) $29.4 \underline{827}$

Question 2: From each list of numbers, write down the largest number.
(a) $58,39,44,62$
(b) $294,208,198,277$
(c) $91,103,100,99$
(d) $807,711,1021,888$
(e) $5454,5000,899,5118$
(f) $30.3,103,9.98,181$

Question 3: Write these numbers in words
(a) 5610
(b) 29052
(c) 312000
(d) 1800000
(e) 5138000
(f) 6243821

Question 4: Write these numbers in figures
(a) four hundred and sixty-eight
(b) five thousand and twenty
(c) twelve thousand, nine hundred and two
(d) three hundred and thirty-one thousand, six hundred and seven
(e) six million
(f) nineteen million, two thousand and seven

Place Value
 Video 222 on www.corbettmaths.com

Question 5: Arrange in order from smallest to largest
(a) $7,5,9,12,2$
(b) 13, 20, 9, 12, 14, 6
(c) $70,80,20,30,90,10$
(d) $73,28,45,38,90,21$
(e) $130,190,210,70,300$
(f) $605,66,566,655,506,65,555$
(g) 2000, 385, 8100, 2800, 888, 400

Question 6: Place the correct sign, < or >, between the following pairs of numbers
(a) 3 \square 1
(b)
2 \square
(c)
$8 \square 5$
(d) 28 \qquad
(e) $110 \square 113$
(f) 102 \square 99
(g) -3

2
(h)
4 \square -1
(i) $\square$$-9$

Apply

Question 1: Milton is 95 miles from Leek.
Doncastle is 102 miles from Leek.
Which town is the greater distance from Leek?
Question 2: Hannah took 817 seconds to complete a puzzle.
Olly took 798 seconds to complete the same puzzle.
Who completed the puzzle in the shortest time?
Question 3: Arrange these temperatures in order, from lowest to highest $18^{\circ} \mathrm{C}, 22^{\circ} \mathrm{C}, 9.5^{\circ} \mathrm{C}, 15^{\circ} \mathrm{C}, 21^{\circ} \mathrm{C}, 17^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C}$

Question 4: Write down the value of the 7 in the answer to 573×100

Question 5: Using the three digits 1, 2 and 3, write down all the different three digit numbers.

Question 6: Write down a number that is larger than 3.4 but smaller than 3.5

Place Value
 Video 222 on www.corbettmaths.com

Question 7: Here are four digits
4
8
3

(a) Use two of the digits to make the largest possible two-digit number.
(b) Use all four digits to make the largest possible number.
(c) Use all four digits to make the smallest possible odd number
(d) Use all four digits to make the four-digit number closest to 4000 .

Question 8: Here are four digits
6

(a) Put one digit in each box to make the smallest possible total.

(b) Write down the total
(c) Put one digit in each box to make the largest possible total.

(d) Write down the total

Answers

Click here

Scan here

Addition

Workout

Click here

Scan here

Question 1: Work out the answers to the following additions
(a) $51+37$
(b) $27+21$
(c) $37+44$
(d) $84+19$
(e) $48+48$
(f) $39+21+43$
(g) $75+56$
(h) $93+84$

Question 2: Work out these additions
(a) $123+564$
(b) $557+61$
(c) $839+152$
(d) $357+368$
(e) $940+346$
(f) $382+121+85$
(g) $948+253$
(h) $777+444$

Question 3: Complete these additions
(a) $4854+1162$
(b) $4611+3270$
(c) $5792+4437$
(d) $4780+1590$
(e) $939+1103$
(f) $2385+5584$
(g) $8888+4424$
(h) $5118+3054+1112$

Question 4: Work out
(a) $48832+14503$
(b) $39104+22934$
(c) $8383+11385+7673+711$

Apply

Question 1: Daniel buys an apple for 39 p and a banana for 27 p. How much does he pay in total?

Question 2: James has 86 marbles and Hannah has 95 marbles. How many marbles do they have altogether?

Addition
 Video 6 on www.corbettmaths.com

Question 3: The distances, in kilometres, between four towns are shown on the map.

(a) Work out the distance between Leek and Dale.
(b) Work out the distance between Milton and Dale

Question 4: In year 7 there are 238 students.
In year 8 there are 225 students.
In year 9 there are 233 students.
How many students are there in total in years 7, 8 and 9 ?
Question 5: Copy these additions into your book and fill in the missing numbers.
(a)

(b)

(c)

Question 6: Can you spot any mistakes in the questions below?

Click here

Question 1: Work out the answers to the following subtractions
(a) 68-32
(b) 98-21
(c) 51-24
(d) $70-38$
(e) 46-28
(f) 81-43
(g) $94-67$
(h) $85-56$

Question 2: Work out these subtractions
(a) 785-512
(b) 548-26
(c) 839-152
(d) 557-319
(e) 940-236
(f) 888-192
(g) 603-381
(h) 800-118

Question 3: Complete these subtractions
(a) 4854-1132
(b) 4811-1570
(c) 5792-4437
(d) 4781-1952
(e) 7925-1176
(f) 8080-3131
(g) 8132-7569
(h) 9000-3941

Question 4: Work out
(a) 48832-14503
(b) 39104-22934
(c) 78383-11385

Apply

Question 1: Sarah buys an apple for 41p and a banana for 27p. How much more expensive is an apple than a banana?

Question 2: Kelly has 76 marbles and Hannah has 102 marbles. How many more marble does Hannah have than Kelly?

Question 3: At a football match there are 2942 Rovers fans and 9381 City fans. How many more fans did City have?

Subtraction
 Video 304 on Corbettmaths

Question 4: Theo wants to buy a laptop that costs $£ 425$. Theo has saved $£ 267$ so far. How much more money does Theo need to save?

Question 5: Copy these subtractions into your book and fill in the missing numbers.
(a)

Question 6: Can you spot any mistakes in the questions below?

$$
\begin{array}{r}
698 \\
-149 \\
\hline 551
\end{array}
$$

Question 7: This table shows the lengths of three rivers.
How much longer is the Nile than the combined lengths of the other two rivers?

River	Length in kilometres
Nile	6,853
Thames	346
Mississippi	3,734

Question 8: Grace is saving money for a new guitar.
The guitar costs $£ 175$
In January she saved $£ 36.24$
In February she saved $£ 14.17$
Work out how much more money Grace needs to save.

Question 9: Work out the difference between 234,789 and 502,113

Subtraction
 Video 304 on Corbettmaths

Question 10: Write down the number that is twenty thousand less than one million

Question 11: This table shows the number of people living in various cities in England.

City	Population
Brighton	273,369
Preston	190,687
Birmingham	$1,224,136$
Telford	166,641

How many more people live in Birmingham than Preston?

Answers

Click here

Scan here

Multiplication: Times Tables

Video 204a on Corbettmaths

Workout

 Scan here

Click here

Question 1: Answer the following multiplications
(a) 3×3
(b) 5×4
(c) 6×2
(d) 3×10
(e) 3×5
(f) 2×9
(g) 1×1
(h) 7×2
(i) 1×4
(j) 3×2
(k) 5×10
(l) 2×8
(m) 7×5
(n) 1×8
(o) 3×6
(p) 3×9
(q) 5×9
(r) 5×5
(s) 7×10
(t) 10 x 9
(u) 2×11
(v) 4×3
(w) 3×7
(x) 10×10

Question 2: Work out each of the following
(a) 4×8
(b) 9×10
(c) 6×6
(d) 7×8
(e) 9×6
(f) 8×6
(g) 9×7
(h) 9×9
(i) 7×6
(j) 9×4
(k) 11×8
(l) 6×8
(m) 5×6
(n) 7×7
(o) 8×9
(p) 8×8
(q) 12×3
(r) 3×8
(s) 5×12
(t) 11×11
(u) 6×9
(v) 12×12
(w) 0×8
(x) 12×11

Question 3: Work out each of the following
(a) $30 \div 10$
(b) $10 \div 5$
(c) $8 \div 4$
(d) $9 \div 3$
(e) $25 \div 5$
(f) $15 \div 3$
(g) $21 \div 7$
(h) $18 \div 6$
(i) $24 \div 6$
(j) $30 \div 5$
(k) $40 \div 4$
(l) $16 \div 4$
(m) $49 \div 7$
(n) $63 \div 9$
(o) $64 \div 8$
(p) $54 \div 6$
(q) $72 \div 8$
(r) $56 \div 7$
(s) $48 \div 8$
(t) $36 \div 6$

Video 204a on Corbettmaths

Apply

Question 1: Martin works for 7 hours and is paid $£ 8$ per hour. How much is he paid?

Question 2: Russell is given $£ 4$ pocket money each week.
He is saving for a game that costs $£ 32$.
How many weeks will it take Russell to save enough money to buy the game?

Question 3: A carton holds 6 eggs.
How many eggs are there in 7 full boxes?

Question 4: Harry earns $£ 9$ per hour and works 7 hours.
Carly earns $£ 11$ per hour and works 6 hours.
Who earns more money and by how much?

Question 5: Gregory says "when an odd number is multiplied by an odd number, the answer is always odd."

Is Gregory correct?

Question 6: A small bag of doughnuts contains 5 doughnuts.
A medium bag of doughnuts contains 9 doughnuts.
A large bag of doughnuts contains 12 doughnuts.
Mr Jones buys 9 small bags of doughnuts.
Miss Jenkins buys 7 medium bags of doughnuts.
Mrs Hughes buys 4 large bags of doughnuts.
(a) Who has bought the most doughnuts?
(b) How many doughnuts did they buy in total?

Answers

Videos 199 and 200 on www.corbettmaths.com

Question 1: Work out the following multiplications
(a) 32×3
(b) 15×5
(c) 23×4
(d) 19×3
(e) 47×2
(f) 6×21
(g) 35×5
(h) 59×4
(i) 7×28
(j) 62×6
(k) 74×5
(l) 53×9
(m) 7×66
(n) 83×8
(o) 96×9

Question 2: Work out the following multiplications
(a) 223×2
(b) 132×3
(c) 124×4
(d) 5×135
(e) 403×6
(f) 263×6
(g) 365×7
(h) 308×9
(i) 6×555
(j) 758×4
(k) 642×8
(l) 383×7
(m) 798×9
(n) 1294×5
(o) 2074×6
(p) 8×4868

Apply

Question 1: Work out the product of 18 and 4
Question 2: How many days are there in 35 weeks?
Question 3: Mr Burns wants to buy every student in Year 11 a doughnut.
There are 120 students in Year 11.
Mr Burns buys 26 bags of doughnuts and there are 5 doughnuts in a bag.
Has Mr Burns bought enough doughnuts?
Question 4: Claudia saves $£ 8$ every month.
How much money does she save over 2 years?
Question 5: Find the area of this rectangle.

Multiplication 1

Videos 199 and 200 on www.corbettmaths.com

Question 6: At a wedding, there are 16 tables.
15 tables seat 6 guests
1 table will seat 8 guests
Work out the total number of chairs needed.

Question 7: Here is part of Olive's gas bill.
Each unit of gas costs 9p.
Old reading 1695 units

New reading 2104 units
Work out how much Olive will have to pay.

Question 8: Leanne works in a cinema.
She is paid $£ 7$ per hour for the first 120 hours she works each month.
Leanne is paid an overtime rate of $£ 9$ per hour for any additional hours.
In September she works 138 hours.
Work out how much Leanne is paid.

Question 9: Below are two boxes that contain numbers.

Box 1	Box 2
9 2 3 7 4	33 63 25 94

Choose one number from each box that multiply together to give an answer between 400 and 500 .

Question 10: Nicole owns a clothes shop.
She buys 8 jackets for $£ 73$ each.
Nicole sells the jackets for $£ 125$ each.
Work out her profit.

Question 11: 800 people attended a charity football match between Ballymena United and AFC Telford.
Adult tickets are $£ 9$ and child tickets are $£ 4$.
Out of the 800 people at the match, 155 are children
How much money was raised for charity?

Multiplication 1
 Videos 199 and 200 on www.corbettmaths.com

Question 12: Mr and Mrs Neill book a 10 day holiday in July.
They have three children.
Work out the total cost.
CORBETTMATHS HOLIDAYS
Price per day

Dates	Per adult	Per child
$1^{\text {st }}$ March to $30^{\text {th }}$ April	$£ 23$	$£ 9$
$1^{\text {st }}$ June to $31^{\text {st }}$ August	$£ 26$	$£ 13$

There is a $£ 15$ booking charge for every holiday
Question 13: Bertie wants to buy a table and six chairs.
Where should he buy them?

| Furniture World |
| :--- | :--- |
| Table $£ 180$ |
| Each chair $£ 45$ |\quad| \quadFurniture Land
 Table Free if you buy 6 chairs
 Each chair $£ 77$ |
| :--- |

Furniture World
Table £180
Table Free if you buy 6 chairs Each chair $£ 77$

Home of Furniture
Table £194
Two chairs £82

Question 14: Place the digits 4, 5, 6 and 8 into the boxes below so that
(a) You find the largest possible answer.
(b) You find the smallest possible answer

Question 15: Donald is buying ribbon to wrap his Christmas presents.
The ribbon costs $£ 1.89$ per metre.
He buys 7 metres of ribbon.
Work out the total cost.

Answers

Click here

Scan here

Division

Videos 98 on www.corbettmaths.com

Workout

Click here

Scan here

Question 1: Work out the answers to the following divisions
(a) $84 \div 4$
(b) $52 \div 2$
(c) $72 \div 3$
(d) $75 \div 5$
(e) $54 \div 3$
(f) $68 \div 4$
(g) $\quad 90 \div 5$
(h) $84 \div 6$
(i) $91 \div 7$
(j) $81 \div 3$
(k) $87 \div 3$
(l) $92 \div 4$

Question 2: Work out the answers to the following divisions
(a) $236 \div 2$
(b) $156 \div 3$
(c) $108 \div 4$
(d) $235 \div 5$
(e) $260 \div 4$
(f) $222 \div 3$
(g) $545 \div 5$
(h) $312 \div 6$
(i) $438 \div 6$
(j) $171 \div 9$
(k) $584 \div 8$
(l) $553 \div 7$
(m) $\quad 981 \div 9$
(n) $856 \div 4$
(o) $801 \div 9$
(p) $406 \div 7$

Question 3: Work out the answers to the following divisions
(a) $2735 \div 5$
(b) $3312 \div 4$
(c) $2664 \div 3$
(d) $6540 \div 5$
(e) $3360 \div 7$
(f) $4902 \div 6$
(g) $7128 \div 9$
(h) $9020 \div 5$
(i) $8208 \div 8$
(j) $7500 \div 6$
(k) $15462 \div 3$
(l) $24353 \div 7$

Question 4: Work out each of the following
(a) $154 \div 11$
(b) $192 \div 12$
(c) $195 \div 13$
(d) $345 \div 15$
(e) $374 \div 22$
(f) $416 \div 16$
(g) $385 \div 11$
(h) $648 \div 12$
(i) $1150 \div 25$
(j) $805 \div 35$
(k) $1196 \div 52$
(l) $630 \div 18$
(m) $5580 \div 90$
(n) $2520 \div 105$
(o) $1755 \div 65$
(p) $2904 \div 33$

Division

Videos 98 on www.corbettmaths.com

Question 5: Work out each of the following. Give each answer as a decimal.
(a) $82 \div 4$
(b) $75 \div 6$
(c) $12 \div 5$
(d) $4 \div 5$
(e) $88 \div 5$
(f) $118 \div 8$
(g) $174 \div 12$
(h) $745 \div 20$
(i) $3406 \div 8$
(j) $4268 \div 6$
(k) $8519 \div 14$
(1) $1854 \div 24$

Apply

Question 1: A toy costs $£ 6$.
Over a week, a shop makes $£ 162$ from selling the toy. How many toys were sold?

Question 2: A group of 3 friends take a journey in a taxi.
The total cost of the journey is $£ 72$.
The friends share the cost equally. How much does each person pay?

Question 3: A bookshelf in a classroom is 112 cm long.
A teacher has 30 mathematics textbooks, each 4 cm wide.
(a) Can the teacher place all 30 textbooks on the shelf?
(b) What is the maximum number of textbooks that will fit on the shelf?

Question 4: A journey lasts 119 days.
How many weeks is this?
Question 5: Sally is paid $£ 8$ per hour.
In one week she is paid $£ 264$. How many hours did Sally work?

Question 6: A school has 5 year groups and 835 students in total. Each year group has an equal number of students. How many students are in each year group?

Question 7: A group of 9 friends go on a coach tour.
The total cost for the tour is $£ 648$.
Work out the cost per person.
Question 8: The product of Jack's age and Florence's age is 266. Jack is 14 years old. How old is Florence?

Division

Videos 98 on www.corbettmaths.com
Question 9: At a conference there are 621 people.
Each table seats 8 people.
How many tables are needed?
Question 10: Daisy is buying rulers.
She has $£ 10$.
Each ruler costs 74p
Daisy buys as many rulers as she can.
(a) How many rulers does Daisy buy?
(b) How much change should Daisy receive?

Question 11: Miss Jenkins has 18 bags of sweets.
Each bag contains 30 sweets.

Miss Jenkins shares as many sweets as possible equally among the 16 students in her class.
(a) How many sweets does each student receive?
(b) How many sweets are left over?

Question 12: Harry hires a car from Holiday Cars for 3 days. His total bill was $£ 204$.
How many miles did Harry drive?
Question 13: Leah bought a new car costing $£ 18,000$

She paid a deposit of $£ 2,000$.
Leah paid the rest of the money over 50 equal monthly payments.
How much was each monthly payment?
Question 14: James hired a holiday cottage for 7 days for $£ 406$
Ben hires the same cottage, at the same price per day, for 10 days. How much will this cost Ben?

Question 15: The product of three numbers is 1001.
The first two numbers are 7 and 11.
What is the third number?
Question 16: There are 1560 sweets in a tub.
Katherine and her friends share the sweets equally.
Each person receives 65 sweets.
How many friends does Katherine have?
Question 17: A theatre has 28 seats in each row.
There are 1036 seats in total.
How many rows are there?

Answers
© CORBETTMATHS 2018

Click here

Scan here

Question 1: Work out each of the following multiplications
(a) 3×10
(b) 8×10
(c) 12×10
(d) 16×10
(e) 25×10
(f) 42×10
(g) 78×10
(h) 20×10
(i) 90×10
(j) 112×10
(k) 203×10
(l) 140×10
(m) 529×10
(n) 400×10
(o) 1925×10
(p) 3500×10
(q) 2710×10
(r) 50000×10
(s) 6204×10
(t) 99099×10

Question 2: Work out each of the following multiplications
(a) 0.2×10
(b) 0.8×10
(c) 0.1×10
(d) 1.3×10
(e) 5.8×10
(f) 15.1×10
(g) 20.5×10
(h) 357.4×10
(i) 0.06×10
(j) 0.14×10
(k) 0.42×10
(l) 3.07×10
(m) 0.009×10
(n) 0.0053×10
(o) 0.105×10
(p) 0.0381×10
(q) 3.4905×10
(r) 0.25801×10
(s) 400.05×10
(t) 122.08×10

Question 3: Work out each of the following multiplications
(a) 4×100
(b) 7×100
(c) 15×100
(d) 28×100
(e) 30×100
(f) 90×100
(g) 165×100
(h) 593×100
(i) 520×100
(j) 203×100
(k) 400×100
(l) 100×100
(m) 2000×100
(n) 3902×100
(o) 2030×100
(p) 40001×100

Question 4: Work out each of the following multiplications
(a) 0.3×100
(b) 0.9×100
(c) 0.02×100
(d) 0.05×100
(e) 0.15×100
(f) 0.23×100
(g) 5.8×100
(h) 4.13×100
(i) 3.08×100
(j) 0.822×100
(k) 0.606×100
(l) 0.004×100
(m) 320.4×100
(n) 2.3802×100
(o) 0.00351×100
(p) 105.1×100

Question 5: Work out each of the following multiplications
(a) 5×1000
(b) 9×1000
(c) 18×1000
(d) 45×1000
(e) 40×1000
(f) 70×1000
(g) 200×1000
(h) 595×1000
(i) 710×1000
(j) 909×1000
(k) 900×1000
(l) 1000×1000
(m) 8000×1000
(n) 5800×1000
(o) 5040×1000
(p) 60000×1000

Question 6: Work out each of the following multiplications
(a) 0.2×1000
(b) 0.8×1000
(c) 1.4×1000
(d) 8.3×1000
(e) 0.06×1000
(f) 0.007×1000
(g) 17.5×1000
(h) 30.9×1000
(i) 4.45×1000
(j) 0.48×1000
(k) 0.033×1000
(l) 0.0081×1000
(m) 0.403×1000
(n) 0.2002×1000
(o) 1.0934×1000
(p) 93.0491×1000

Question 7: Work out each of the following multiplications
(a) 76×10
(b) 230×100
(c) 3×1000
(d) 52×1000
(e) 6×100
(f) 352×10
(g) 4.5×100
(h) 0.9×10
(i) 25×100
(j) 8001×1000
(k) 4.1×1000
(l) 0.75×10
(m) 3.5×100
(n) 50.89×100
(o) 0.018×100
(p) 0.679×1000
(q) 0.888×10
(r) 3094.5×100
(s) 255.21×10
(t) 39.001×1000
(u) 3.005×10
(v) 0.005×100
(w) 8900×100
(x) 0.011×1000
(y) 94.6×100
(z) 4.99×1000

Apply

Question 1: Natalie saves $£ 100$ a month towards a new car.
How much money will she have saved after 11 months?

Question 2: A box contains 10 eggs.
Hilary needs 68 eggs.
How many boxes of eggs should she buy?

Question 3: A ticket for a charity concert costs $£ 10$. 231 tickets are sold.
How much money is raised for charity?

Question 4: A box of drawing pins contains 100 pins.
How many drawing pins are there in 40 boxes?

Question 5: (a) How many years are there in 15 centuries?
(b) How many years are there in 8 decades?
(c) How many years are there in 4 millennia?

Question 6: The decagon below is regular, which means that all sides are the same length.
Work out the perimeter of the decagon.

Question 7: Shown below are some questions and answers. Match each question and correct answer.
The first one has been completed for you.

0.032×10	32
3.2×10	3.32
0.32×10	3.2
0.32×1000	3200
32×100	320

Question 8: Write down the value of the 2 in the answer to 7.025×1000

Question 9: A coffee shop sells cups of coffee in 0.3 litre cups.
In one week they sell 10000 cups of coffee.
How many litres of coffee do they sell in one week?

Answers

Click here

Scan here

Division by $10,100,1000$ etc

Video 99 on www.corbettmaths.com

Click here

Scan here

Question 1: Work out each of the following divisions
(a) $30 \div 10$
(b) $90 \div 10$
(c) $120 \div 10$
(d) $250 \div 10$
(e) $800 \div 10$
(f) $380 \div 10$
(g) $4000 \div 10$
(h) $1600 \div 10$
(i) $9 \div 10$
(j) $2 \div 10$
(k) $1 \div 10$
(l) $7 \div 10$
(m) $72 \div 10$
(n) $15 \div 10$
(o) $93 \div 10$
(p) $219 \div 10$
(q) $3414 \div 10$
(r) $109 \div 10$
(s) $2015 \div 10$
(t) $870 \div 10$
(u) $0.6 \div 10$
(v) $0.3 \div 10$
(w) $0.15 \div 10$
(x) $0.08 \div 10$

Question 2: Work out each of the following divisions
(a) $200 \div 100$
(b) $500 \div 100$
(c) $900 \div 100$
(d) $1400 \div 100$
(e) $4800 \div 100$
(f) $6200 \div 100$
(g) $3000 \div 100$
(h) $1000 \div 100$
(i) $17000 \div 100$
(j) $53000 \div 100$
(k) $2810 \div 100$
(l) $9145 \div 100$
(m) $180 \div 100$
(n) $375 \div 100$
(o) $520 \div 100$
(p) $70 \div 100$
(q) $40 \div 100$
(r) $17 \div 100$
(s) $5 \div 100$
(t) $2 \div 100$
(u) $2.9 \div 100$
(v) $0.8 \div 100$
(w) $0.35 \div 100$
(x) $4.2 \div 100$

Question 3: Work out each of the following divisions
(a) $4000 \div 1000$
(b) $7000 \div 1000$
(c) $16000 \div 1000$
(d) $86000 \div 1000$
(e) $50000 \div 1000$
(f) $370000 \div 1000$
(g) $1900 \div 1000$
(h) $4250 \div 1000$
(i) $5833 \div 1000$
(j) $900 \div 1000$
(k) $820 \div 1000$
(l) $41 \div 1000$
(m) $2 \div 1000$
(n) $13 \div 1000$
(o) $9 \div 1000$
(p) $0.3 \div 1000$
(q) $1.55 \div 1000$
(r) $0.51 \div 1000$
(s) $0.02 \div 1000$
(t) $3.08 \div 1000$
(u) $67000000 \div 1000$
(v) $0.045 \div 1000$
© CORBETTMATHS 2018

Division by 10, 100, 1000 etc
 Video 99 on www.corbettmaths.com

Question 4: Work out each of the following divisions
(a) $56 \div 10$
(b) $48000 \div 100$
(c) $3 \div 1000$
(d) $52 \div 1000$
(e) $6 \div 100$
(f) $312 \div 10$
(g) $4.5 \div 100$
(h) $0.9 \div 10$
(i) $25 \div 100$
(j) $8001 \div 1000$
(k) $4.1 \div 1000$
(l) $0.75 \div 10$
(m) $3.5 \div 100$
(n) $50.89 \div 100$
(o) $0.018 \div 100$
(p) $0.679 \div 1000$
(q) $0.888 \div 10$
(r) $3094.5 \div 100$
(s) $255.21 \div 10$
(t) $39.001 \div 1000$

Apply

Question 1: Vicky saves $£ 10$ each week.
She wants to buy a violin that costs $£ 180$
How many weeks will it take Vicky to save enough money?
Question 2: Barry prints booklets that each have 100 pages.
In total, he prints 6000 pages.
How many booklets did Barry print?
Question 3: A box of staples contains 1000 staples.
A secretary wants to order 3000000 staples.
How many boxes of staples should they order?

Question 4: A decagon has 10 sides.
The decagon below is regular, which means that all sides are the same length.
Work out the length of each side of the decagon.
Question 5: A bakery makes 2600 cupcakes in a week.

The cupcakes are placed into boxes of 10 .
Each box of cupcakes is sold for $£ 3$.
How much money does the bakery make for selling the cupcakes?
Question 6: Work out the missing numbers
(a)

(b)

Answers

Click here
Scan here

Order of Operations (BODMAS)
 Video 211 on Corbettmaths

Click here

Scan here

Question 1: Work out
(a) $7+2 \times 3$
(b) $9+4 \times 2$
(c) $10+2 \times 2$
(d) $18+4 \div 2$
(e) $20-5 \times 2$
(f) $8-2 \times 3$
(g) $21-9 \div 3$
(h) $100-40 \times 2$
(i) $16 \div 1-3$
(j) $5+5 \times 5$
(k) $13-7 \div 1$
(l) $7 \times 6-4$
(m) $9+3-2$
(n) $20-5+6$
(o) $21-17+4$
(p) $30 \times 4 \div 2$
(q) $(7+7) \div 2$
(r) $35-(9+3)$
(s) $40 \times(2+3)$
(t) $60 \div(1+5)$
(u) $15 \div(3+2)$
(v) $9 x(7+4)$
(w) $90 \div(52-7)$
$(x)(8+9) x 3$
(y) $10+5+3 \times 3$
(z) $100-6+2 \times 3$

Question 2: Work out
(a) $5-2^{2}$
(b) $7+3^{2}$
(c) $9^{2}+1$
(d) $6^{2}-5^{2}$
(e) $(7-2)^{2}$
(f) $(4+3)^{2}$
(g) $(1+2)^{3}$
(h) $(2+8)^{3}$
(i) $10-\sqrt{ } 16$
(j) $\sqrt{ }(2+14)$
(k) $\sqrt{4}+3^{2}$
(l) $2 \times 5-\sqrt{4}$

Question 3: Work out
(a) $5 \times 3+2 \times 6$
(b) $9 \div 3+15 \times 2$
(c) $10 \div 2-2 \times 1$
(d) $5 \times(2+1)+4$
(e) $8+(5-1) \times 3$
(f) $50-(1+4) \times 4$
(g) $19 \times 2+5^{2}$
(h) $8^{2}+2 \times 3^{2}$
(i) $7 \times(8 \div 4)^{2}$
(j) $11+11-6^{2} \div 2$

Question 4: Copy out the following and insert brackets in each to make the correct answer.
(a) $10 \times 2+6=80$
(b) $5+5 \div 5=2$
(c) $18-6 \div 2=6$
(d) $5+2 \times 3+1=13$
(e) $2 \times 7+1 \times 3=48$
(f) $9+3^{2} \times 10 \div 2=90$

Order of Operations (BODMAS)
 Video 211 on Corbettmaths

Apply

Question 1: Matthew says $9+3 \times 2=15$. Is he correct?

Question 2: Samuel says $6+4 \times 9=90$. Is he correct?

Question 3: Using the numbers 2, 3 and 4 and the operations,+- , and x make as many different possible answers.

Question 4: Matilda thinks of a number, n .
She adds 2 and then multiplies by 3 .
Which expression below is correct?
A
B
C
$n+2 \times 3 \quad 3 n+2 \quad(n+2) \times 3$

Question 5: Can you spot any mistakes?

$$
\begin{aligned}
\text { Work out } & 9+4 \times 3+2 \\
= & 13 \times 3+2 \\
= & 39+2 \\
= & 41
\end{aligned}
$$

Extension Task

Using four number 2's try to make as many different answers as you can. You may use $+,-, x, \div$ and brackets.

You may use one or more of the 2's as powers.

Answers

Click here

Scan here

Solving Equations
 Video 110 on Corbettmaths

Scan here

Question 1: Solve the following equations
(a) $w+5=7$
(b) $C+2=10$
(c) $a-1=6$
(d) $x-4=5$
(e) $x+4=13$
(f) $3 w=12$
(g) $2 x=18$
(h) $\frac{W}{2}=6$
(i) $\frac{x}{4}=7$
(j) $5 y=30$
(k) $x+10=40$
(1) $2 x=34$
(m) $x-9=7$
(n) $\frac{m}{6}=8$
(o) $w-15=35$
(p) $\frac{x}{10}=5$
(q) $11 y=55$
(r) $2 x=11$
(s) $b+6=4$
(t) $\frac{x}{3}=1.5$
(u) $4 y=10$
(v) $10 g=37$
(w) $a-7=-3$
(x) $v+2=-6$
(y) $\frac{W}{4}=2.7$
(z) $5 y=24$

Question 2 Solve the following equations
(a) $2 x+3=9$
(b) $3 w-1=14$
(c) $7 y+2=30$
(d) $5 x+20=35$
(e) $6 c-12=48$
(f) $8 m-4=20$
(g) $7 w+13=90$
(h) $12 p-18=30$
(i) $9 w-5=67$
(j) $10 a+40=100$
(k) $9 x-24=84$
(1) $7 w+1=1$
(m) $6 x-19=5$
(n) $3 w+4=43$
(o) $\frac{x}{3}+1=5$
$\operatorname{cp}_{\text {(р) }} \frac{c}{2}-4=6$
(q) $\frac{x}{10}+3=9$
(r) $\frac{n}{9}-8=1$

Solving Equations
Video 110 on Corbettmaths
(s) $\frac{x}{4}-7=14$
${ }^{(\mathrm{t})} \frac{\mathrm{C}}{3}+8=40$
(u) $\frac{x}{5}-26=19$

Question 3: Solve the following equations
(a) $2 m+8=15$
(b) $10 w-3=45$
(c) $4 x+5=7$
(d) $5 w+11=19$
(e) $8 x+2=30$
(f) $4 x+11=3$
(g) $6 w+20=2$
(h) $2 w-9=-6$
(i) $3 c+8=-13$
(i) $\frac{x}{3}+6=1$
(k) $\frac{W}{2}+8=3$
(1) $\frac{m}{8}+7=-1$
(m) $\frac{1}{2} x+3=15$
(n) $\frac{1}{4} m-7=2$
(0) $\frac{1}{3} x-2=-6$

Question 4: Solve the following equations
(a) $\frac{x+1}{2}=9$
(b) $\frac{x-3}{4}=8$
(c) $\frac{m-8}{5}=3$
(d) $\frac{2 x}{3}=6$
(e) $\frac{3 x}{5}=30$
(f) $\frac{5 x}{4}=20$
(g) $\frac{2 x}{7}+2=12$
(h) $\frac{8 x}{3}-9=7$
(i) $\frac{3 x}{10}-4=8$
(i) $\frac{10 m+20}{15}=6$
(k) $\frac{2 x+5}{3}=7$
(1) $\frac{7 x-5}{10}=10$

Question 5: Solve the following equations
(a) $16-y=5$
(b) $5+x=13$
(c) $10-3 x=1$
(d) $38-4 m=14$
(e) $9+7 x=51$
(f) $11-5 x=21$
(g) $18-3 a=6$
(h) $21=7+4 f$
(i) $44=58-89$

Question 1: The equation $9 x=27$ has an answer of $x=3$.
Write down five different equations with an answer of $x=3$.
Question 2: Ronald is x years old.
His friend Colin is 3 years older than than Ronald.
Colin is 19 years old.
(a) Write down an equation for this information.
(b) Solve your equation to find how old Ronald is.

Question 3: Hannah is n years old.
Her aunt Emily is three times older than Hannah.
Emily is 48 years old.
(a) Write down an equation for this information.
(b) Solve your equation to find how old Ronald is.

Question 4: Sam thinks of a number, n.
He multiplies his number by 7 and then adds 3 to the result.
His final answer is 45 .
(a) Write down an equation for this information.
(b) Solve your equation to find the number, n.

Question 5: A rectangular field has a perimeter of 150 m .
The field is 15 metres longer than it is wide.
The width of the field is x metres.
(a) Write down an equation for this information.
(b) Solve your equation to find the width of the field
(c) Find the length of the field

Question 6: Shown is a triangle.
The three angles add up to give 180°
(a) Write down an equation for this information
(b) Solve your equation to find x .

Question 7: The sum of each row is given.
Find $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d .

a	a	a	a	24
a	a	b	b	28
b	c	c	c	29
a	b	c	d	31

Answers

Workout

Click here

Scan here

Question 1: Arrange in order from smallest to largest
(a) $8,5,9,10,2$
(b) $11,20,9,15,14,3$
(c) $40,60,20,30,90,10$
(d) $83,18,45,37,90,21$
(e) 140, 180, 210, 70, 300
(f) $605,56,566,655,506,65,555$
(g) 2000, 375, 7100, 2900, 999, 400

Question 2: Arrange in order from smallest to largest
(a) $3,-5,1,0,-2,4$
(b) $-1,8,-5,2,-9,-4,3$
(c) $-1,-7,-2,5,-6,1$
(d) $10,-7,-3,5,-9,-2,-12$
(e) 21, $-3,16,-19,-15,23,-30$
(f) $-25,35,15,-5,25,-45,20$
(g) 129, 101, -11, -111, 92, -91, 133, -29

Question 3: Place the correct sign, < or >, between the following pairs of numbers
(a) $3 \square 1$
(b) $2 \square 7$
(c) $10 \square 11$
(d) $8 \square 5$
(e) 33 \square 25
(f) $28 \square$ 21
(g) 102 \square 99
(h) 110 \square 113

Question 4: Place the correct sign, < or >, between the following pairs of numbers
(a) $-3 \square 2$
(b) 4 \square (c) $-5 \square 3$

Ordering Numbers

Videos 208 and 221 on www.corbettmaths.com
(d) $-3 \square-1$
(e) $-19 \square 15$
(f) -20 \square -30
(g) -8

(h) $-12 \square-9$

Apply

Question 1: Redville is 102 miles from Leek.
Castleville is 75 miles from Leek.
Which town is the greater distance from Leek?
Question 2: James took 617 seconds to complete a puzzle.
Georgia took 598 seconds to complete the same puzzle.
Who completed the puzzle in the shortest time?

Question 3: Arrange these temperatures in order, from lowest to highest
(a) $8^{\circ} \mathrm{C}, 12^{\circ} \mathrm{C}, 9^{\circ} \mathrm{C}, 15^{\circ} \mathrm{C}, 11^{\circ} \mathrm{C}, 7^{\circ} \mathrm{C}, 2^{\circ} \mathrm{C}$
(b) $2^{\circ} \mathrm{C},-5^{\circ} \mathrm{C}, 4^{\circ} \mathrm{C}, 8^{\circ} \mathrm{C},-3^{\circ} \mathrm{C}, 1^{\circ} \mathrm{C},-7^{\circ} \mathrm{C}$
(c) $5^{\circ} \mathrm{C},-3^{\circ} \mathrm{C}, 11^{\circ} \mathrm{C}, 9^{\circ} \mathrm{C},-14^{\circ} \mathrm{C}, 21^{\circ} \mathrm{C},-1^{\circ} \mathrm{C}$

Question 4: Jemima earns $£ 41,838$, Patrick earns $£ 40,989$ and Benny earns $£ 42,001$
(a) Who earns the least amount of money?
(b) Who earns the most amount of money?

Question 5:
(a) Arrange the towns in order of temperature, starting with the lowest.
(b) How much warmer is it in Leek than Newtown?
(c) Which town has a temperature closest to $0^{\circ} \mathrm{C}$

Answers

Click here

Scan here

Question 1: Write down the coordinates of the points A, B, C, D, E, F, G and H.

Question 2: Make a copy of the grid shown and then plot the points:
(a) $\mathrm{A}(3,1)$
(b) $\mathrm{B}(2,5)$
(c) $\mathrm{C}(5,4)$
(d) $\mathrm{D}(1,1)$
(e) $\mathrm{E}(4,0)$
(f) $\mathrm{F}(0,1)$
(g) $\quad \mathrm{G}(3,3)$
(h) $\mathrm{H}(0,0)$

Question 3: Write down the coordinates of the points A, B, C, D, E, F, G and H.
 moths

Coordinates

Videos 84 and 85 on www.corbettmaths.com

Question 4: Make a copy of the grid shown and then plot the points:
(a) $\mathrm{A}(1,4)$
(b) $\mathrm{B}(-1,1)$
(c) $\mathrm{C}(-3,-4)$
(d) $\mathrm{D}(2,-1)$
(e) $\mathrm{E}(-2,0)$
(f) $\mathrm{F}(-1,-2)$
(g) $G(3,-2)$
(h) $\mathrm{H}(0,-4)$
(i) $\mathrm{I}(-2,2)$
(j) $\quad \mathrm{J}(-4,-1)$
(k) $\mathrm{K}(0,1)$

Apply

Question 1: Three points are shown on a grid.
ABCD is a rectangle.
(a) Plot D
(b) Write down the coordinates of the point D

Question 2: Two points are shown on a grid ABC is an isosceles triangle.
(a) Plot C
(b) Write down the coordinates of the point C

Question 3: Make a copy of the grid shown.
(a) Plot the point A $(-3,-2)$
(b) Plot the point B $(1,-2)$
(c) Plot the point C $(3,1)$
(d) Plot the point D $(-1,1)$
(e) What type of quadrilateral is $A B C D$?

Coordinates

Videos 84 and 85 on www.corbettmaths.com
moths

For each question 4-5 below, you will need copies of this grid.

Question 4: (a) Plot the following coordinates

$$
(3,0)(-3,-2)(1,-4)(1,2)(-3,0)(-1,-4)(3,-2)(-1,2)
$$

(b) Join the shapes to make a polygon.
(c) Name the polygon that you have drawn.

Question 5: (a) Plot the coordinates A $(-4,1), B(1,-2)$ and $C(2,1)$
(b) ABCD is a kite.
(c) Plot D
(d) Write down the coordinates of the point D.

Question 6: James has been asked to plot the coordinates A $(-3,2), B(0,2), C(-1,-4)$ and D (4, -4)

Can you spot any mistakes?

Click here

Scan here

Click here

Scan here

Workout

Question 1: Work out the answers to each of the following
(a) 2-3
(b) 3-5
(c) 4-9
(d) $1-5$
(e) 5-7
(f) 6-7
(g) $8-11$
(h) $2-10$
(i) $-2+4$
(j) $-3+9$
(k) $-7+10$
(l) $-6+1$
(m) $-5+8$
(n) $-9+7$
(o) $-20+11$
(p) $-12+18$
(q) $-3-2$
(r) $-4-1$
(s) $-6-3$
(t) $-1-5$
(u) $-7-3$
(v) $-8-5$
(w) -9-12
(x) $-15-13$

Question 2: Work out the answers to each of the following
(a) $3+5-4$
(b) $2+1-6$
(c) 5-8-1
(d) $7-10+1$
(e) $8+3-15$
(f) 5-6-4
(g) 1-7-4
(h) $-3+6+1$
(i) $-8+2+3$
(j) $-10+4-6$
(k) $-9-3-1$
(1) $-2-7+4$
(m) $-20+11-6$
(n) $-5+14-8$
(o) $-13-4+6$
(p) $-30-80+40$

Question 3: Work out the answers to each of the following
(a) $4+-1$
(b) $6+-2$
(c) $8+-7$
(d) $3+-5$
(e) $1+-7$
(f) $3+-10$
(g) $-2+-1$
(h) $-1+-6$
(i) $-5+-5$
(j) $-4+-5$
(k) $-10+-11$
(1) $-8+-4$

Question 4: Work out the answers to each of the following
(a) $6-+1$
(b) $3-+2$
(c) $8-+4$
(d) $2-+5$
(e) $1-+9$
(f) $-2-+5$
(g) $-10-+3$
(h) $-1-+1$
(i) $5-+11$
(j) $-2-+6$
(k) $-20-+13$
(l) $15-+25$

Question 5: Work out each of the following
(a) 1--2
(b) 3--1
(c) $3--5$
(d) 6--4
(e) 9--2
(f) $-1--4$
(g) $-2--1$
(h) $-8--3$
(i) $-5--9$
(j) $-6--7$
(k) $-15--8$
(l) $-12--30$

Question 6: Work out each of the following
(a) 11-15
(b) $-9+5$
(c) $-4-8$
(d) $-4+-3$
(e) $-9-+4$
(f) 10--3
(g) $7-20$
(h) $-2--5$
(i) $12+-7$
(j) $-4--1$
(k) $-9+-8$
(l) $8-13$
(m) 6--11
(n) $-7-+7$
(o) $-6-5$
(p) $-20+-3$
(q) $-9--15$
(r) $-8+25$
(s) 31-50
(t) $-30--16$
(u) $-41-14$
(v) $-5-+23$
(w) $-16+-15$
(x) $40--40$
(y) $-18--27$
(z) $-52+90$

Apply

Question 1: At midnight, the temperature in Belfast was $-2^{\circ} \mathrm{C}$ At 9 am , the temperature was $5^{\circ} \mathrm{C}$

By how many degrees did the temperature rise?

Question 2: Mr Jones has - $£ 50$ in his bank account.
If he pay $£ 70$ into the bank, how much will he now have in his account?

Question 3: In the magic squares below, the numbers in any column, row or diagonal add up to give the same answer.
Complete each magic square.
(a)

-4	-9	-2
-8		-6

(b)

-3		-1
2		
1		

Question 4: Work out the missing numbers
(a) $\square+3=1$
(b) $0-\square=8$
(c) $-6+\square=-1$
(d) $\square-5=-13$
(e) $9-\square=15$
(f) $-2-\square=5$

Question 5: Write down five different additions that have an answer of 2.
You may only use whole numbers.
Question 6: Write down five subtractions that have an answer of 2.
You must use at least one negative number per calculation.
Question 7: Below are seven cards, each with a number written on it.

-3	-4	6	-7	1

(a) Choose two suitable cards to make the calculation correct.

$$
\square+\square=2
$$

(b) Choose two cards that will give the smallest possible answer

(c) Choose two cards that will give an answer of zero

(d) Choose two cards that will give the greatest possible answer

Answers

Click here
 moths

Examples

Negative Numbers: Multiplication and Division Videos 206 and 207 on Corbettmaths

Workout

Click here

Question 1: Answer each of the following multiplications
(a) 2×-3
(b) -4×3
(c) -5×5
(d) -7×-2
(e) -6×-3
(f) 8×-4
(g) -9×3
(h) -5×-8
(i) -9×7
(j) 10×-8
(k) 7×-4
(l) 6×8
(m) -11×3
(n) 4×-15
(o) -12×-12
(p) -5×7
(q) 9×-8
(r) -7×-8
(s) 12×-6
(t) 4×-13
(u) -11×10
(v) -20×-6
(w) 14×7
(x) -18×-13
(y) 25×-7
(z) -16×21

Question 2: Answer each of the following multiplications
(a) $2 \times 3 \times-2$
(b) $-3 \times 2 \times 5$
(c) $-5 \times-6 \times 2$
(d) $10 \times-3 \times-4$
(e) $-9 \times 2 \times-2$
(f) $-4 \times-3 \times-5$
(g) $-8 \times-8 \times-2$
(h) $5 \times-4 \times-7$

Question 3: Work out each of the following
(a) $(-3)^{2}$
(b) $(-6)^{2}$
(c) $(-2)^{2}$
(d) $(-1)^{2}$
(e) $(-10)^{2}$
(f) $(-8)^{2}$
(g) $(-12)^{2}$
(h) $(-20)^{2}$

Question 4: Work out each of the following
(a) $(-2)^{3}$
(b) $(-3)^{3}$
(c) $(-1)^{3}$
(d) $(-5)^{3}$
(e) $(-1)^{4}$
(f) $(-10)^{4}$
(g) $(-2)^{4}$
(h) $(-3)^{4}$

Question 5: Answer each of the following divisions
(a) $-10 \div 2$
(b) $-12 \div 3$
(c) $-24 \div 4$
(d) $-42 \div 6$
(e) $9 \div-3$
(f) $21 \div-7$
(g) $-44 \div 11$
(h) $-72 \div 9$
(i) $-10 \div-5$
(j) $-28 \div-4$
(k) $-30 \div-3$
(l) $-48 \div-8$
(m) $-6 \div 6$
(n) $24 \div-3$
(o) $-12 \div-12$
(p) $-132 \div 11$
(q) $72 \div-8$
(r) $-108 \div-9$
(s) $36 \div-9$
(t) $100 \div-4$
(u) $-95 \div 5$
(v) $-49 \div-7$
(w) $144 \div 12$
(x) $-215 \div-5$
(y) $90 \div-15$
(z) $-342 \div 9$

Question 6: Answer each of the following divisions
(a) -9×-5
(b) $-32 \div 8$
(c) $66 \div-6$
(d) 2×-12
(e) $-24 \div-3$
(f) -12×7
(g) $-54 \div 6$
(h) -16×-2
(i) 8×-6
(j) -7×-6
(k) $40 \div-8$
(l) $56 \div-7$
(m) $-81 \div-9$
(n) -14×-5
(o) 10×-11
(p) $-65 \div 5$
(q) -90×-3
(r) $-170 \div-10$
(s) $1 \div-1$
(t) -1.5×-3
(u) $-17 \div 2$
(v) 2.2×-10
(w) $-93 \div-10$
(x) -6.2×-3
(y) -9×10.5
(z) $52 \div-5$

Apply

Question 1: Work out the missing numbers
(a)

(b)

(c)

$$
-6 \times \square=18
$$

(d)

Question 2: Work out the missing numbers
(a)

(b)

(c)

$$
32 \div \square=-4
$$

(d)
$\square \div-3=4$

Negative Numbers: Multiplication and Division
 Videos 206 and 207 on Corbettmaths

Question 3: Write down eight multiplications with an answer of -20
Question 4: Write down eight divisions with an answer of -3
Question 5: Write down the next two numbers in each of these number sequences
(a) $2,-6,18, \ldots, \ldots$
(b) $-5,10,-20, \ldots, \ldots$
(c) $240,-120,60, \ldots$, ...
(d) $-12,6,-3, \ldots, \ldots$

Question 6: Shown below is a "magic square" where the product of each row, column and diagonal are equal.

Find the missing numbers

	36	
9	6	4
-12		

Question 7: Shown below is a "magic square" where the product of each row, column and diagonal are equal.

Find the missing numbers

Answers

Click here

Scan here

Question 1: The thermometer below shows the temperature at 6am in a town.
(a) What temperature is shown?
$-7-6-5-4-3-2-101223456789$
The temperature increases by $5^{\circ} \mathrm{C}$ by 10 am .
(b) What is the temperature at 10am.

Question 2: The map shows the temperatures in six cities.
(a) Which city is the warmest?
(b) Which city is the coldest?
(c) What is the difference in temperature between London and Cork?

The temperature in Berlin is $4^{\circ} \mathrm{C}$ colder than Belfast
(d) What is the temperature in Berlin?

Question 3: Shown is a list of locations and their elevations
(a) List the locations that are below sea level, 0 metres.
(b) Which location has the lowest elevation?
(c) Which location has the highest elevation?
(d) Work out the difference in Baku's and Tokyo's elevations

Location	Elevation
Coachella	-22 metres
Bern	542 metres
Jericho	-258 metres
Baku	-28 metres
Lake Eyre	-16 metres
Tokyo	17 metres

Question 4: At 3am the temperature is $-8^{\circ} \mathrm{C}$.
By 1 pm the temperature went up by $13^{\circ} \mathrm{C}$.
From 1 pm to 10 pm the temperature went down by $6^{\circ} \mathrm{C}$
Work out the temperature at 10 pm .

Negatives: Real Life Applications

Video 209 on www.corbettmaths.com

Question 5: The table below shows some information about the minimum and maximum temperature for a day in January.

The minimum temperature in Lisburn is $1^{\circ} \mathrm{C}$ colder than its maximum temperature.
(a) What was Lisburn's minimum temperature?
(b) Which city had the lowest minimum temperature?

City	Minimum ${ }^{\circ} \mathrm{C}$	Maximum ${ }^{\circ} \mathrm{C}$
Glasgow	$-6{ }^{\circ} \mathrm{C}$	$9^{\circ} \mathrm{C}$
Bristol	$4^{\circ} \mathrm{C}$	$14^{\circ} \mathrm{C}$
Norwich	$-7^{\circ} \mathrm{C}$	$7{ }^{\circ} \mathrm{C}$
Hull	$-1^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$
Derby	$5^{\circ} \mathrm{C}$	$11^{\circ} \mathrm{C}$
Lisburn		$-2^{\circ} \mathrm{C}$

(c) Which city had the greatest maximum temperature?
(d) Which city had the greatest difference between their minimum and maximum temperatures?

Question 6: Dominic's bank account balance is $£ 23$. He withdraws $£ 50$ from his bank account. What is his new bank account balance?

Question 7: Daisy's bank account balance is $-£ 100$. Daisy deposits $£ 35$ into the bank account. What is her new bank account balance?

Question 8: The table shows the melting points of some elements
(a) Which element has the lowest melting point?
(b) Work out the difference in melting points of bromine and mercury
(c) Work out the difference in melting points of nitrogen and silicon

The temperature is $-10^{\circ} \mathrm{C}$

Element	Melting Point
Bromine	$-7^{\circ} \mathrm{C}$
Caesium	$29^{\circ} \mathrm{C}$
Mercury	$-39^{\circ} \mathrm{C}$
Nitrogen	$-210^{\circ} \mathrm{C}$
Phosphorus	$44^{\circ} \mathrm{C}$
Silicon	$1414^{\circ} \mathrm{C}$

(d) Which of the elements are solid?

Question 9: Ballymena Rovers started a football season on -14 points
Each win is worth 3 points.
Each draw is worth 1 point
Each loss is worth 0 points.
Over the season, Ballymena Rovers won 15 matches, drew 3 matches and lost 2.
How many points did they finish with at the end of the season?

Question 10: Tristan is taking part in a maths competition.
Each correct answer is worth 5 points and each incorrect answer is worth -3 If Tristan chooses not to answer a question, it is worth 0 points.
There are 10 questions in total.
(a) What would Tristan's final score be if he answered 5 correctly, 4 incorrectly and left 1 blank?
(b) Can Tristan finish with -10 points? Explain your answer.

Question 11: The temperature, in ${ }^{\circ} \mathrm{C}$, at midnight at a weather station on 5 days was recorded.

Day	Monday	Tuesday	Wednesday	Thursday	Friday
Temperature	-6	3	-4	1	-4

(a) What percentage of the days had temperatures below $0^{\circ} \mathrm{C}$?
(b) What is the range of the temperatures?
(c) What is the median of the temperatures?
(d) What is the mean of the temperatures recorded?

Answers

Click here

Scan here

St Andrew's Academy

Mathematics Department

BLOCK TWO

Number	Algebra	Mensuration
- Rounding (nearest whole number, 10, 100, 1000, $1 d p \& 2 d p)$. - Understanding decimals (place value revision). - Ordering decimals. - Reading decimal scales. - Add/Subtract Decimals. - Multiply/Divide Decimals by whole numbers.	- Substitution. - Collecting like terms.	- Measuring and drawing lengths. - Converting units of length. - Calculating perimeter - Area of squares and rectangles. - Area of triangles.

Workout

Question 1: Round each of the numbers below to the nearest whole number.
(a) 5.8
(b) 12.1
(c) 8.6
(d) 4.4

(e) 15.3
(f) 325.9
(g) 0.7
(h) 18.5

Question 2: Round each of the following numbers to the nearest whole number.
(a) 7.2
(b) 1.9
(c) 14.3
(d) 9.4
(e) 27.8
(f) 19.1
(g) 50.6
(h) 154.7
(i) 200.5
(j) 334.6
(k) 99.9
(l) 840.4
(m) 1981.6
(n) 245.3

Question 3: Round each of the numbers below to the nearest whole number.
(a) 8.15
(b) 3.92
(c) 2.45
(d) 10.62

(e) 17.84

(f) 52.09

(g) 1.38
(h) 38.51

Rounding: to nearest whole number

Video 276 on www.corbettmaths.com

Question 4: Round each of the following numbers to the nearest integer (whole number).
(a) 4.11
(b) 6.74
(c) 2.91
(d) 9.46
(e) 8.27
(f) 6.34
(g) 13.89
(h) 16.08
(i) 42.63
(j) 29.54
(k) 38.15
(l) 103.46

Question 5: Round each of the following numbers to the nearest integer (whole number).
(a) 48.394
(b) 7.651
(c) 8.909
(d) 32.488
(e) 838.099
(f) 573.5619
(g) 15.6001 (h) 144.4998

Apply

Question 1: A cupcake contains 4.6 g of protein. Round 4.6 g to the nearest whole number.

Question 2: The thermometer shows the temperature in a town.

(a) Write down the temperature
(b) Round the temperature to the nearest degree celsius.

Question 3: Georgia has divided 2355 by a number on her calculator The calculator shows the answer.
(a) What number did Georgia divide 2355 by?
(b) Round her answer to the nearest integer

Question 4: Derek wants to round 8 hours and 45 minutes to the nearest hour.
He says the answer is 8 because 8.45 rounds to 8 .
Explain why Derek is wrong.
Question 5: Jurgen has rounded a number to the nearest whole number. His answer was 600.
Write down 5 different possible numbers that he could have rounded.

Click here

Scan here

Rounding

Videos 277a, 277b on Corbettmaths

Scan here

Question 1: Round the following numbers to the nearest 10
(a) 32
(b) 67
(c) 71
(d) 24
(e) 59
(f) 92
(g) 16
(h) 83
(i) 17
(j) 14
(k) 78
(l) 43
(m) 84
(n) 27
(o) 25
(p) 41
(q) 75
(r) 33
(s) 95
(t) 98
(u) 19
(v) 99
(w) 62
(x) 54
(y) 15
(z) 74

Question 2: Round the following numbers to the nearest 10
(a) 121
(b) 146
(c) 164
(d) 185
(e) 292
(f) 238
(g) 312
(h) 333
(i) 845
(j) 582
(k) 233
(l) 167
(m) 596
(n) 705
(o) 502
(p) 993
(q) 998
(r) 1241
(s) 1628
(t) 1164
(u) 2673
(v) 6036
(w) 7555
(x) 8128
(y) 13821
(z) 29234

Question 3: Round the following numbers to the nearest 10
(a) 24.2
(b) 61.9
(c) 76.8
(d) 26.4
(e) 14.7
(f) 231.8
(g) 185.3
(h) 201.5
(i) 78.38
(j) 135.14
(k) 141.97
(l) 164.89
(m) 4938.3
(n) 5141.49
(o) 15.455
(p) 1009.02 moths

Rounding
Videos 277a, 277b on Corbettmaths

Question 4: Round the following numbers to the nearest 100
(a) 390
(b) 220
(c) 160
(d) 240
(e) 518
(f) 842
(g) 756
(h) 547
(i) 371
(j) 578
(k) 613
(l) 888
(m) 374
(n) 611
(o) 673
(p) 480
(q) 150
(r) 349
(s) 951
(t) 950
(u) 850
(v) 949
(w) 748
(x) 540
(y) 450
(z) 495

Question 5: Round the following numbers to the nearest 100
(a) 1430
(b) 1280
(c) 1610
(d) 1550
(e) 4030
(f) 6080
(g) 7420
(h) 8160
(i) 3562
(j) 2415
(k) 8283
(l) 5858
(m) 9248
(n) 3358
(o) 4214
(p) 9987
(q) 13494
(r) 16148
(s) 13114
(t) 15832
(u) 26783
(v) 56862
(w) 45555
(x) 13668
(y) 489481
(z) 124346

Question 6: Round the following numbers to the nearest 100
(a) 248.2
(b) 561.9
(c) 716.8
(d) 246.4
(e) 149.7
(f) 2315.8
(g) 1835.3
(h) 2061.5
(i) 2378.38
(j) 5135.14
(k) 9141.97
(l) 4164.89
(m) 44938.3
(n) 25141.49
(o) 1995.455
(p) 51009.02 moths

Rounding
Videos 277a, 277b on Corbettmaths

Question 7: Round the following numbers to the nearest 1000
(a) 2300
(b) 5600
(c) 2900
(d) 8200
(e) 7200
(f) 8420
(g) 2780
(h) 4500
(i) 1930
(j) 6480
(k) 7710
(l) 5500
(m) 4951
(n) 7571
(o) 7456
(p) 5499
(q) 7395
(r) 3112
(s) 3661
(t) 5532
(u) 4945
(v) 9442
(w) 9550
(x) 9499
(y) 9934
(z) 7409

Question 8: Round the following numbers to the nearest 1000
(a) 21800
(b) 18300
(c) 17600
(d) 19200
(e) 11590
(f) 16350
(g) 24500
(h) 34800
(i) 38434
(j) 84925
(k) 48358
(l) 56187
(m) 123940
(n) 293482
(o) 231184
(p) 563921

Question 10: Round the following numbers to the nearest 10000
(a) 39304
(b) 23424
(c) 44500
(d) 26492
(e) 26500
(f) 54588
(g) 62049
(h) 75000
(i) 418553
(j) 144503
(k) 185000
(l) 384458

Question 11: Round the following numbers to the nearest 100000
(a) 384000
(b) 129400
(c) 569000
(d) 812300
(e) 384984
(f) 750000
(g) 1284000
(h) 2840000

Question 12: Round the following numbers to the nearest 1000000
(a) 1492000
(b) 5600000
(c) 7308000
(d) 6670000
(e) 12800000
(f) 17450000
(g) 35700000
(h) 384728521

Question 1: 645 people attended a concert. Round this to the nearest 10.
Question 2: 861 students attend a school. Round this to the nearest 100.
Question 3: The cost of a laptop is $£ 1348$. Round this to the nearest $£ 100$.
Question 4: 24,812 people attended a football match. Round this to the nearest thousand.
Question 5: The population of a city is 85,398 . Round this to the nearest thousand.
Question 6: The number of beads in a jar is 50 to the nearest ten.
(a) What is the minimum possible number of beads in the jar?
(b) What is the maximum possible number of beads in the jar?

Question 7: The number of students at a school is 1200 to the nearest 100 .
What is the maximum possible number of students at the school?
Question 8: The population of a village is 900 to the nearest 100.
State if the following could be true or false:
(a) 890 people live in the village.
(b) 960 people live in the village.
(c) 912 people live in the village.
(d) 845 people live in the village.
(e) 850 people live in the village.
(f) 950 people live in the village.

Question 9: The value of a car is $£ 7000$ to the nearest thousand pounds.
(a) What is the least possible value of the car?
(b) What is the greatest possible value of the car?

Question 10: The number of people at a concert is 200 to the nearest 10 .
(a) What is the least possible number of people at the concert?
(b) What is the greatest possible number of people at the concert?

Click here

Scan here

Rounding: to $1 / 2 / 3$ etc decimal places

 moths
Video 278 on www.corbettmaths.com

Examples

Click here

Scan here

Question 1: Round each of the numbers below to 1 decimal place.
(a) 3.47
(b) 0.11
(c) 9.84
(d) 12.75

Question 2: Round each of the following numbers to 1 decimal place.
(a) 4.82
(b) 6.19
(c) 9.77
(d) 10.63
(e) 21.41
(f) 3.14
(g) 48.18
(h) 29.26
(i) 80.85
(j) 0.43
(k) 248.38
(l) 637.51
(k) 62.89
(1) 9.99

Question 3: Round each of the numbers below to one decimal place.
(a) 4.282
(b) 7.725
(c) 2.548
(d) 1.6631

Question 4: Round each of the numbers below to the nearest tenth (1 decimal place)
(a) 5.191
(b) 8.246
(c) 10.087
(d) 39.555
(e) 0.831
(f) 93.2941
(g) 38.3152
(h) 7.26229
(i) 0.54868696

Question 5: Round each of the numbers below to 2 decimal places.
(a) 5.123
(b) 7.869
(c) 0.435
(d) 16.0149

© CORBETTMATHS 2017

Rounding: to $1 / 2$ /3 etc decimal places
 Video 278 on www.corbettmaths.com

Question 6: Round each of the numbers below to 2 decimal places
(a) 3.487
(b) 2.613
(c) 1.984
(d) 10.046
(e) 8.155
(f) 19.367
(g) 3.141
(h) 6.0698
(i) 4.26317
(j) 93.46197

Question 7: Round each of the numbers below to 3 decimal places
(a) 0.0346
(b) 6.7568
(c) 4.2251
(d) 1.7583
(e) 40.48546
(f) 128.01891
(g) 0.5059802
(h) 384.456094

Apply

Question 1: $\quad 51.26 \%$ of the people living in a town are female. Round this figure to one decimal place.

Question 2: Walter has worked out a calculation on a calculator Shown on the calculator is the answer.
(a) Round the answer to one decimal place
(b) Round the answer to two decimal places

Question 3: Daniel has been asked to round 1.725 to one decimal place.
His answer is 172.5
Explain Daniel's mistake.
Question 4: Nicole has rounded a number to one decimal place.
Her answer is 9.2
Write down 10 different possible numbers that she could have rounded.
Question 5: A chocolate bar contains 0.4715 g of salt.
Round this to two decimal places.
Question 6: Dominic writes down two numbers, A and B .
A and B have 2 decimal places.
Dominic rounds A to 1 decimal place and calls his answer C.
He rounds B to 1 decimal place and calls his answer D.
Dominic says the difference between A and B cannot be the same as the difference between C and D.
Show he is incorrect
© CORBETTMATHS 2017

Click here

Scan here

Question 1: Rhys thinks of a number and rounds it to the nearest 10. His answer is 80 .
(a) What is the smallest possible number Rhys could have thought of?
(b) What is the greatest possible number Rhys could have thought of?

Question 2: Charlotte thinks of a number and rounds it to the nearest 10. Her answer is 140 .
(a) What is the smallest possible number Charlotte could have thought of?
(b) What is the greatest possible number Charlotte could have thought of?

Question 3: Melody thinks of a number and rounds it to the nearest 10. Her answer is 800 .
(a) What is the smallest possible number Melody could have thought of?
(b) What is the greatest possible number Melody could have thought of?

Question 4: Steffan thinks of a number and rounds it to the nearest 100. His answer is 500 .
(a) What is the smallest possible number Steffan could have thought of?
(b) What is the greatest possible number Steffan could have thought of?

Question 5: Fleur thinks of a number and rounds it to the nearest 100. Her answer is 1900.
(a) What is the smallest possible number Fleur could have thought of?
(b) What is the greatest possible number Fleur could have thought of?

Question 6: Rhian thinks of a number and rounds it to the nearest 1000. Her answer is 24000 .
(a) What is the smallest possible number Rhian could have thought of?
(b) What is the greatest possible number Rhian could have thought of?

Question 7: The sign is correct to the nearest ten.
(a) What is the lowest possible number of people that live in Kingstone?
(b) What is the greatest possible number of people that live in Kingstone?

Question 8: The sign is correct to the nearest hundred.
(a) What is the lowest possible number of people that live in Keswick?
(b) What is the greatest possible number of people that live in Keswick?

Question 9: The sign is correct to the nearest hundred.
(a) What is the lowest possible number of people that live in Keswick?
(b) What is the greatest possible number of people that live in Keswick?

Kingstone

Population 1,380

Keswick

Population 5,300

Truro

Population 19,000

Question 10: A newspaper says the number of people at a rugby match is 37,000 to the nearest 1,000.

What is the greatest possible number of people at the match?

Question 11: The population of Wales is 3.1 millions, to the nearest hundred thousand.
(a) What is the lowest possible number of people that live in Wales?
(b) What is the greatest possible number of people that live in Wales?

Apply

Question 1: Owen has 200 marbles to the nearest hundred.
He says that means the greatest number of marbles he could have is 250 .

Explain why Owen is incorrect.

Rounding: Highest/Lowest Values
 Video 280 on Corbettmaths

Question 2: A packet of sweets contains 30 sweets to the nearest 10.
Miss Simpson gives each of the 20 students in her class a packet of sweets.
What is the lowest possible total number of sweets that Miss Simpson could have given out?

Question 3: Tomas organises a concert to raise money for charity.
Entry to the concert is $£ 5.00$
The number of people attending the concert is 700 to the nearest hundred.
What is the greatest possible amount of money he raised for charity?

Question 4: Evelyn has 8 bags of 20p coins.
Each bag contains 50 coins to the nearest 10 .
Work out the difference between the greatest and smallest possible amount of money that Evelyn has.

Answers

Question 1: Round each of the following numbers to 1 significant figure
(a) 36
(b) 22
(c) 83
(d) 68
(e) 97
(f) 120
(g) 519
(h) 260
(i) 741
(j) 888
(k) 408
(l) 650
(m) 148
(n) 972
(o) 3900
(p) 5400
(q) 4125
(r) 2732
(s) 6349
(t) 8099
(u) 6499

Question 2: Round each of the following numbers to 1 significant figure
(a) 12000
(b) 46000
(c) 74500
(d) 83771
(e) 95120
(f) 330000
(g) 863000
(h) 248220
(i) 489331
(j) 13800000

Question 3: Round each of the following numbers to 1 significant figure
(a) 2.9
(b) 3.2
(c) 5.7
(d) 46.81
(e) 57.25
(f) 80.96
(g) 94.9
(h) 115.1
(i) 8.482
(j) 13.65
(k) 66.321
(l) 5501.4
(m) 48.02
(n) 99.99

Question 4: Round each of the following numbers to 1 significant figure
(a) 0.54
(b) 0.86
(c) 0.161
(d) 0.048
(e) 0.0943
(f) 0.0071
(g) 0.0038
(h) 0.06482
(i) 0.8835
(j) 0.00064
(k) 0.00098
(l) 0.00002789

Question 5: Round each of the following numbers to 2 significant figures
(a) 844
(b) 665
(c) 129
(d) 2840
(e) 9250
(f) 1359
(g) 298
(h) 504
(i) 999
(j) 3841
(k) 48500
(l) 13.7
(m) 58.3
(n) 49.6
(o) 1.41
(p) 42.64
(q) 0.3189
(r) 22490
(s) 186110
(t) 0.04912
(u) 4.98
(v) 997826 (w) 2.99517 (x) 0.06014
© CORBETTMATHS 2017

Rounding: Significant Figures

Video 279a on www.corbettmaths.com

Question 6: Round each of the following numbers to 3 significant figures
(a) 9433
(b) 1891
(c) 2496
(d) 3.226
(e) 37756
(f) 57147
(g) 7.0078
(h) 51.564
(i) 0.90341
(j) 2.7892
(k) 0.08906
(l) 0.007812 (m) 9909.1
(n) 0.6006

Apply

Question 1: In an election 43.8% of people voted for a candidate.
Round this figure to one significant figure
Question 2: 32641 people watch a rugby match between Italy and Argentina.
Round this number to 2 significant figures.
Question 3: Round the following numbers to 1 significant figure
(a) eight million, six hundred thousand
(b) the product of 19 and 351

Question 4: Tom has been asked to round the number on the calculator to 2 significant figures.
Tom says the answer is 516.16
Can you explain Tom's mistake?

516.158

$\%$ (af cc:

Question 5: The population of Frome to 2 significant figures is 26,000 .
(a) Write down the lowest number of people that could live in Frome?
(b) Write down the greatest number of people that could live in Frome?

Frome

Question 6: Round 7.494×10^{7} to 2 significant figures. Give your answer as an ordinary number.

Answers

Click here

Scan here

Workout

Question 1: Arrange in order from smallest to largest
(a) $3.7,3.5,3.9,3.4,3.8$
(b) $9.2,2.9,5.4,1.8,8.7$
(c) $4.6,4.9,14.1,0.9,1.2$
(d) $8.13,8.05,8.24,8.09,8.15,8.02$
(e) 1.53, 1.48, 1.59, 1.44, 2.11, 0.98
(f) $0.59,1.24,0.45,1.34,0.88,2.01$

Question 2: Arrange in order from smallest to largest
(a) $1.2,1.08,1.13,1.6,1.29$
(b) $5.25,5.2,5.19,5.08,5.1,5.21$
(c) $40.6,46.1,40.49,40.68,46,46.09$
(d) $0.24,0.3,0.125,0.2,0.199,0.18$
(e) $0.82,0.082,0.9,0.807,0.8$
(f) $65,6.5,0.65,7.65,0.076,7$
(g) $0.25,0.3,0.2,0.06,0.19$
(h) 7.81, 7.49, 7.9, 7.007, 7.1, 7.107
(i) $10.083,10.08,10.009,10.56,10.3$
(j) $0.342,0.075,0.256,0.34,0.6,0.4$

Question 3: Place the correct sign, < or > between the following pairs of decimals
(a) $6.3 \square 6.7$
(b) $0.8 \square 0.5$
(c) $2.2 \square 2.15$
(d) 8.21 \square 8.9
(e) $9.099 \square 9.0971$
(f) $1.205 \square 1.23$

Apply

Question 1: Arrange these temperatures in order, from lowest to highest
(a) $11^{\circ} \mathrm{C}, \quad 10.8^{\circ} \mathrm{C}, 12.3^{\circ} \mathrm{C}, \quad 15^{\circ} \mathrm{C}, 12.7^{\circ} \mathrm{C}$
(b) $8.5^{\circ} \mathrm{C}, \quad 0.7^{\circ} \mathrm{C},-3{ }^{\circ} \mathrm{C}, 0.9^{\circ} \mathrm{C}, 6^{\circ} \mathrm{C}, 1.3^{\circ} \mathrm{C},-5.1^{\circ} \mathrm{C}$

Question 2: Arrange these amounts of money in order, from highest to lowest.
(a) $£ 6.74, £ 10, £ 1.99, £ 8, £ 3.30, £ 2$
(b) 80 p, $£ 1, £ 0.09,23$ p, $£ 2.75, £ 0.82, £ 20$

Ordering Decimals

Video 95 on www.corbettmaths.com

Question 3: The distance of various landmarks from Big Ben are listed below. Arrange the landmarks in order, from closest to furthest.

London Eye	0.41 miles
Wembley	11.62 miles
Buckingham Palace	0.8 miles
Trafalgar Square	0.63 miles
Hyde Park	2.27 miles
Thorpe Park	24.7 miles

Question 4: Arrange these measurements in order from largest to smallest
(a) $6.2 \mathrm{~m}, 6.077 \mathrm{~m}, 6.31 \mathrm{~m}, 6.19 \mathrm{~m}, 6.4 \mathrm{~m}, 6.009 \mathrm{~m}$
(b) $5 \mathrm{~kg}, 800 \mathrm{~g}, 1.2 \mathrm{~kg}, 90 \mathrm{~g}, 0.6 \mathrm{~kg}$

Question 5: The heights of seven footballers are listed below.
$1.9 \mathrm{~m}, 1.82 \mathrm{~m}, 1.78 \mathrm{~m}, 1.8 \mathrm{~m}, 1.88 \mathrm{~m}, 1.86 \mathrm{~m}, 1.7 \mathrm{~m}$
(a) Arrange the heights in order from smallest to largest.
(b) Write down the median height.
(c) A player is picked at random. Write down the probability that he is over 1.85 m .

Question 6: The lengths of time that it takes to complete a jigsaw are below.
0.5 hours, 1.25 hours, 100 minutes, 0.75 hours, 40 minutes, 2 hours, 1.5 hours, 180 minutes, 61 minutes, 0.25 hours.
(a) Arrange the times in order, from quickest to longest.
(b) What fraction of the people completed the jigsaw in under 1 hour?
(c) What percentage of people took 2 hours or longer?

Adding Decimals

Video 90 on Corbettmaths

Examples

Workout

Click here

Scan here

Question 1: Work out the answers to the following additions
(a) $4.5+2.3$
(b) $8.4+1.7$
(c) $0.7+0.5$
(d) $2.8+10.3$
(e) $13.4+28.9$
(f) $206.2+72.8$
(g) $6.4+15.9$
(h) $0.5+0.8+0.1$
(i) $9.7+1.4+1.3$
(j) $16.8+3.9+102.2+87.4$

Question 2: Work out these additions
(a) $0.14+0.53$
(b) $0.35+0.65$
(c) $2.47+3.34$
(d) $4.93+2.25$
(e) $4.77+1.84$
(f) $10.38+6.81$
(g) $7.83+12.49$
(h) $0.56+107.08$
(i) $9.85+2.63+0.89$
(j) $0.08+0.12+0.87+1.93+2.06$

Question 3: Complete these additions
(a) $6.5+1.73$
(b) $0.56+1.6$
(c) $2.45+7.8$
(d) $8.67+3.9$
(e) $9.2+4.87$
(f) $1.08+2.6$
(g) $20.6+15.84$
(h) $41.8+5.35$
(i) $7.4+2.329$
(j) $0.018+2.39$
(k) $9.224+8.89$
(l) $0.293+9.815$
(i) $4.52+0.3+0$

Question 1: Richard buys a notebook that costs $£ 6.78$ and a pen that costs $£ 4.19$. Work out the total cost.

Question 2: Holly is saving money.
In January, she saves $£ 15.15$
In February, she saves $£ 8.82$
In March, Holly saves $£ 13.37$
Work out how much she has saved in total.

Adding Decimals Video 90 on Corbettmaths

Question 3: David drives 4.8 miles to Bristol and a further 6.7 miles to Bath. Work out how far he drives in total.

Question 4: Mr Jenkins has three pieces of rope.
The pieces of rope are $2.35 \mathrm{~m}, 1.8 \mathrm{~m}$ and 3.06 m long. Work out the total length of the pieces of rope.

Question 5: Shown is a rectangle.

$$
11.26 \mathrm{~cm}
$$

Calculate the perimeter.

Question 6: Work out the missing number.

Question 7: Shown is a shape made from three identical squares and three identical rectangles.

Calculate the perimeter of the shape.

Question 8: The first four terms of a number sequence are
$2.52,2.71,2.9,3.09, \ldots, \ldots, \ldots$
Work out the next two terms.

Question 9: Grace is working out $12.4+3.18$ Can you spot any mistakes?

Question 10: Neil writes down four numbers with a sum of 50.
All the numbers have two decimal places and no two numbers are the same. Write down four possible numbers Neil could have written down.

Answers

Click here
 moths

Examples

Workout

Decimals: Subtraction

Click here

Scan here

Question 1: Work out the answers to the following subtractions
(a) $0.9-0.1$
(b) $0.8-0.3$
(c) $0.7-0.6$
(d) $0.5-0.2$
(e) $1.2-0.3$
(f) $1.5-0.4$
(g) $1.8-0.6$
(h) $1.9-1.2$
(i) $2.4-0.5$
(j) $3.8-2.5$
(k) $4.1-1.8$
(l) $5.5-3.1$
(m) 8.7-1.3
(n) $9.2-5.8$
(o) 7.3-3.9
(p) $8.5-0.9$

Question 2: Work out the answers to the following subtractions
(a) 7.7-1.5
(b) $8.5-4.1$
(c) $19.7-18.6$
(d) $26.2-5.2$
(e) 54.5-23.1
(f) $80.4-10.3$
(g) 16.6-9.2
(h) $85.7-50.4$
(i) 7.3-4
(j) $8.6-2$
(k) 24.9-6
(l) $15.1-9$
(m) 7-1.3
(n) 9-3.6
(o) 20-4.4
(p) $32-8.7$

Question 3: Work out these subtractions
(a) $0.39-0.23$
(b) $0.47-0.15$
(c) $0.75-0.41$
(d) $0.99-0.65$
(e) $0.46-0.18$
(f) $0.81-0.55$
(g) $1.24-0.72$
(h) 2.13-1.66
(i) $8.63-0.4$
(j) 5.55-3.1
(k) $8.13-0.5$
(l) $3.84-1.9$
(m) 10.4-0.15
(n) 5.8-1.92
(o) 14.5-0.77
(p) $12-4.55$

Question 4: Complete these subtractions
(a) 40.5-19.3
(b) 88.3-52.58
(c) 155.73-48.89
(d) 203.5-51.64
(e) 498-70.94
(f) 500-384.11
(g) 8200-901.3
(h) 10000-4901.33

Question 5: Work out each of the following
(a) 1.284-0.151
(b) 2.028-1.115
(c) 39.45-6.061

Decimals: Subtraction
 Video 91 on www.corbettmaths.com

(d) 40.5-7.258
(e) 204.1945-203.7885
(f) 716-409.4822

Apply

Question 1: Paul buys a book that costs $£ 6.89$ and pays with a $£ 10$ note. How much change should Paul get?

Question 2: Jennifer has 1.2 kg of flour.
She uses 0.75 kg of the flour to bake a cake. How much flour does she have left?

Question 3: The perimeter of the triangle is 16.1 cm . Work out the length of the missing side.

Question 4: The first four terms of a number sequence are
15.8, 15.1, 14.4, 13.7, \qquad
Work out the next two terms.

Question 5: Find the missing numbers

Question 6: Maxine buys 3 magazines that cost $£ 1.99, £ 2.45$ and $£ 3.70$. She pays with a $£ 50$ note.
Work out how much change she should receive?

Question 7: Angus is working out 7.23-1.91 Can you spot any mistakes?

7	$7 \cdot 2$	3		
-	$1 \cdot 9$	1		
6	7	2		

$$
7.23-1.91=672
$$

Answers

Click here

Scan here

Question 1: Work out the answers to the following multiplications
(a) 1.2×4
(b) 3.2×3
(c) 5.3×2
(d) 7.3×3
(e) 1.6×4
(f) 2.9×5
(g) 4.2×6
(h) $\quad 9.5 \times 7$
(i) 6.7×8
(j) 3.8×9
(k) 12.8×3
(l) 24.3×4
(m) $\quad 37.5 \times 6$
(n) $\quad 52.8 \times 7$
(o) $\quad 173.2 \times 3$
(p) 215.8×6
(q) 1243.7×9
(r) $\quad 79.5 \times 8$

Question 2: Work out the answers to the following multiplications
(a) 1.26×2
(b) 2.63×3
(c) 5.14×3
(d) 6.28×4
(e) 7.53×5
(f) $\quad 0.38 \times 8$
(g) $\quad 9.62 \times 6$
(h) 12.38×7
(i) 16.42×9
(j) $\quad 109.34 \times 4$
(k) $\quad 9.08 \times 3$
(l) 12.04×7
(m) $\quad 0.383 \times 3$
(n) $\quad 1.442 \times 6$
(o) 8.291×3
(p) $\quad 9.623 \times 5$
(q) 3.706×8
(r) 4.953×7
(s) $\quad 0.482 \times 8$
(t) $\quad 0.085 \times 7$
(u) 1.3842×3
(v) 4.3342×6
(w) 8.2039×5
(x) 7.3112×9
(y) $\quad 512.83 \times 6$
(z) 293.421×4

Question 3: Work out the answers to the following multiplications
(a) 1.24×13
(b) 2.51×17
(c) 12.5×23
(d) 3.28×21
(e) 6.35×35
(f) $\quad 7.65 \times 37$
(g) $\quad 58.2 \times 46$
(h) 4.23×52
(i) 0.28×57
(j) 0.817×63
(k) $\quad 38.43 \times 19$
(l) 5.45×87
(m) $\quad 12.32 \times 73$
(n) 2.3×123
(o) $\quad 4.7 \times 253$
(p) 8.6×351
(q) 2.03×152
(r) 1.02×607

Multiplying Decimals

Videos 204 on www.corbettmaths.com

Question 4: Work out the answers to the following multiplications
(a) 0.2×0.3
(b) $\quad 0.7 \times 0.2$
(c) $\quad 0.9 \times 0.4$
(d) 0.8×0.6
(e) $\quad 0.7 \times 0.7$
(f) $\quad 0.6 \times 0.5$
(g) $\quad 0.8 \times 0.5$
(h) $\quad 0.5 \times 0.4$
(i) 0.8×0.1
(j) $\quad 0.07 \times 0.5$
(k) $\quad 0.04 \times 0.2$
(l) 0.8×0.07
(m) 0.06×0.9
(n) $\quad 0.04 \times 0.06$
(o) $\quad 0.08 \times 0.03$
(p) $\quad 0.02 \times 0.03$
(q) $\quad 0.003 \times 0.6$
(r) $\quad 0.9 \times 0.002$
(s) $\quad 0.008 \times 0.6$
(t) $\quad 0.005 \times 0.4$
(u) 0.007×0.02
(v) 0.008×0.09
(w) 0.04×0.004
(x) $\quad 0.005 \times 0.003$
(y) 0.008×0.05
(z) $\quad 0.009 \times 0.008$

Question 5: Work out the answers to the following multiplications
(a) 3.1×0.5
(b) 6.3×0.3
(c) 5.4×0.7
(d) 9.2×0.6
(e) $\quad 4.8 \times 0.9$
(f) $\quad 2.4 \times 3.2$
(g) $\quad 9.1 \times 1.3$
(h) 5.5×7.7
(i) 1.7×4.3
(j) $\quad 9.4 \times 4.9$
(k) $\quad 0.13 \times 0.7$
(l) 0.48×0.3
(m) 0.54×0.9
(n) $\quad 0.18 \times 0.17$
(o) 8.3×0.37
(p) 3.5×0.74
(q) $\quad 0.94 \times 0.02$
(r) $\quad 0.38 \times 0.06$
(s) $\quad 0.039 \times 0.7$
(t) $\quad 0.084 \times 1.2$
(u) 8.1×0.05
(v) $\quad 9.4 \times 0.082$
(w) 0.0048×0.12

Question 6: Work out the answers to the following multiplications
(a) 1.29×1.4
(b) 3.52×2.4
(c) 4.92×0.34
(d) 8.12×0.29
(e) $\quad 6.3 \times 2.46$
(f) $\quad 9.2 \times 7.15$
(g) $\quad 0.843 \times 1.9$
(h) $\quad 0.548 \times 2.7$
(i)
6.18×5.1
(j) $\quad 18.2 \times 6.4$
(k) $\quad 5.03 \times 2.8$
(l) 40.8×5.3

Question 1: Regan is paid $£ 6.70$ per hour. He works 8 hours in a week. Work out how much Regan should be paid.

Question 2: Calculate the output

Question 3: Calculate the area of the rectangle

19.4 cm

Question 4: A bottle of cola costs $£ 1.29$
Calculate the total cost of 6 bottles of cola.

Question 5: $\quad \mathrm{Mr}$ and Mrs Jones bring their 5 children to a museum.

Adults $£ 17.60$ each Children $£ 7.55$ each

Work out the total cost for the family.

Multiplying Decimals

Videos 204 on www.corbettmaths.com

Question 6: Class 8A are going on a trip to a windmill.

The trip costs $£ 3.70$ each and there are 26 students in 8 A .
How much money should be collected?

Question 7: Mr.Jenkins is building a fence for his garden.
The fence costs $£ 12.60$ per metre to build.
The fence is 5.3 metres long.

Work out the total cost of building the fence.

Question 8: Calculate the area of this rectangle.

Question 9: Here are the prices of some fruit in a shop.

£0.97 per kilogram

$£ 1.07$ per kilogram
4
$£ 1.46$ per kilogram

Find the total cost of 1.2 kg of apples, 3.5 kg of oranges and 1.9 kg of bananas.

Answers

Click here

Scan here

Dividing Decimals by Whole Numbers Video 93 on www.corbettmaths.com moths

Examples

Scan here

Question 1: Work out
(a) $4.6 \div 2$
(b) $6.5 \div 5$
(c) $9.6 \div 3$
(d) $8.4 \div 4$
(e) $7.2 \div 3$
(f) $6.8 \div 4$
(g) $18.5 \div 5$
(h) $9.6 \div 8$
(i) $14.4 \div 6$
(j) $27.9 \div 9$
(k) $9.1 \div 7$
(l) $36.5 \div 5$
(m) $33.2 \div 4$
(n) $19.2 \div 3$
(o) $27.6 \div 6$
(p) $42.4 \div 8$

Question 2: Work out
(a) $3.96 \div 3$
(b) $0.75 \div 5$
(c) $8.56 \div 4$
(d) $0.528 \div 6$
(e) $5.81 \div 7$
(f) $0.657 \div 9$
(g) $2.176 \div 8$
(h) $0.238 \div 7$
(i) $0.119 \div 7$
(j) $0.072 \div 6$
(k) $2.556 \div 3$
(l) $3.325 \div 5$
(m) $701.2 \div 4$
(n) $9.927 \div 9$
(o) $12.065 \div 5$
(p) $0.16024 \div 4$

Question 3: Work out
(a) $1.3 \div 2$
(b) $2.9 \div 2$
(c) $1.4 \div 5$
(d) $24.3 \div 5$
(e) $5.4 \div 4$
(f) $0.038 \div 5$
(g) $1.4 \div 8$
(h) $2.13 \div 6$
(i) $0.284 \div 8$
(j) $54.3 \div 6$
(k) $47.5 \div 8$
(l) $7.42 \div 3$

Question 4: Work out the following divisions
(a) $8.4 \div 12$
(b) $0.143 \div 11$
(c) $34.5 \div 15$
(d) $0.322 \div 14$
(e) $2.266 \div 22$
(f) $7.68 \div 12$
(g) $0.56 \div 16$
(h) $15.75 \div 25$
(i) $2.12 \div 40$
(j) $77.25 \div 75$
(k) $0.9936 \div 23$
(l) $3.52 \div 110$

Question 1: Four friends share $£ 6.52$ equally.
How much do they each receive?
Question 2: James has 3.65 m of rope into 5 pieces of equal length. How long is equal piece of rope?

Question 3: The perimeter of a square is 53.3 cm . Work out the length of equal side.

Perimeter $=53.3 \mathrm{~cm}$
Question 4: SuperSaver sells 6 eggs for $£ 1.14$
TopBuys sells 8 eggs for $£ 1.68$
BestBuys sells 12 eggs for $£ 2.64$
Which shop is best value?
Question 5: Roger is organising a trip to a museum.
The total price of the tickets is $£ 103.50$
The total price for the coach is $£ 64.80$
If nine people are going on the trip, how much should they pay each?

Question 6: A shop charges 12p to photocopy one page in full colour.
Sam has photocopied some pages in colour and the total cost is $£ 16.08$ How many pages did he photocopy?

Question 7: The perimeter of a regular octagon is 4.096 cm Calculate the length of each side.

Dividing by Decimals

 Videos 92 on www.corbettmaths.com

 Videos 92 on www.corbettmaths.com}

Workout

Click here

Scan here

Question 1: Work out
(a) $6 \div 0.2$
(b) $4 \div 0.5$
(c) $12 \div 0.3$
(d) $2 \div 0.1$
(e) $25 \div 0.5$
(f) $15 \div 0.3$
(g) $0.8 \div 0.2$
(h) $0.9 \div 0.3$
(i) $1.4 \div 0.2$
(j) $3 \div 0.6$
(k) $14 \div 0.7$
(l) $2.4 \div 1.2$
(m) $3.5 \div 0.5$
(n) $45 \div 1.5$
(o) $0.15 \div 0.5$
(p) $0.72 \div 0.2$
(q) $0.48 \div 0.3$
(r) $0.36 \div 0.9$
(s) $0.048 \div 0.2$
(t) $0.095 \div 0.5$
(u) $0.072 \div 0.6$
(v) $1.05 \div 0.5$
(w) $4.29 \div 0.3$
(x) $0.784 \div 0.7$

Question 2: Work out the following
(a) $2 \div 0.05$
(b) $3 \div 0.02$
(c) $6 \div 0.03$
(d) $12 \div 0.04$
(e) $15 \div 0.01$
(f) $60 \div 0.06$
(g) $0.08 \div 0.04$
(h) $0.06 \div 0.02$
(i) $0.4 \div 0.05$
(j) $0.8 \div 0.02$
(k) $0.27 \div 0.09$
(l) $0.28 \div 0.07$
(m) $1.2 \div 0.06$
(n) $4.9 \div 0.07$
(o) $0.058 \div 0.02$
(p) $0.075 \div 0.05$
(q) $1.278 \div 0.06$
(r) $0.0476 \div 0.07$
(s) $360 \div 0.12$
(t) $45 \div 0.15$

Question 3: Work out
(a) $0.6 \div 0.02$
(b) $34 \div 0.2$
(c) $0.9 \div 0.5$
(d) $2.4 \div 0.08$
(e) $6 \div 0.005$
(f) $12 \div 0.1$
(g) $1.4 \div 0.04$
(h) $0.066 \div 0.3$
(i) $0.06 \div 0.15$
(j) $20 \div 0.004$
(k) $2.672 \div 0.08$
(l) $2.75 \div 0.05$
(m) $0.275 \div 0.005$
(n) $750 \div 2.5$
(o) $5.6 \div 0.004$
(p) $360 \div 1.2$

Question 1: A sweet cost $£ 0.04$
How many sweets can I buy for $£ 20$?

Question 2: Mia has 20 metres of ribbon.
She is cutting it into pieces that are 0.8 m long.
How many 0.8 m pieces of ribbon will she have?

Question 3: Yasmin has $£ 17$ in five pence pieces.
How many five pence pieces does she have?

Question 4: Find the missing numbers

Question 5: A teacher is placing textbooks that are 2.5 cm thick on a bookshelf. The teacher wants to place 60 textbooks on the shelf. The bookshelf is 160 cm long.
Does the teacher have enough room on the bookshelf for the textbooks?
Question 6: A grain of rice has a mass of 0.015 g
How many grains are there in 300 g of rice?
Question 7: A type of pebble has a mass of 0.8 g
How many pebbles are there in 40 kg ?
Question 8: Use approximations to estimate the answer to the following
(a)
(b)
$\frac{6.97 \times 201.82}{0.391}$
(c)
$\frac{1802.7-397.2}{0.699}$
Answers

Click here

Substitution

Video 20 on www.corbettmaths.com

Workout

Click here

Scan here

Question 1: If $a=7 \quad b=10 \quad c=3 \quad d=8$ and $e=15$
Find the value of each expression.
(a) $a+5$
(b) $\mathrm{b}-4$
(c) $\mathrm{c}+\mathrm{d}$
(d) $\mathrm{e}-\mathrm{d}$
(e) 2 a
(f) $4 b$
(g) 3 e
(h) 5 c
(i) $\frac{b}{2}$
(j) $\frac{e}{5}$
(k) $\frac{d}{4}$
(1) $\frac{a}{2}$
(m) a^{2}
(n) b^{2}
(o) c^{2}
(p) d^{2}
(q) $2 \mathrm{a}+1$
(r) $3 \mathrm{~b}-7$
(s) $9 \mathrm{c}+11$
(t) $4 \mathrm{e}-45$
(u) $2 a+3 c$
(v) $4 \mathrm{~d}-\mathrm{b}$
(w) $5 \mathrm{a}+2 \mathrm{~d}$
(x) e-4c
(y) $30-4 a$
(z) 15-3c

Question 2: If $\mathrm{f}=5 \mathrm{~g}=6 \mathrm{~h}=4$ and $\mathrm{i}=2$
Find the value of each expression.
(a) fg
(b) hi
(c) fgh
(d) i^{3}
(e) $\sqrt{ } \mathrm{h}$
(f) $3 f+2 g$
(g) $5 \mathrm{~h}+7 \mathrm{i}$
(h) $9 \mathrm{~h}-7 \mathrm{i}$

Question 3: If $a=-2 \quad b=5 \quad c=-6 \quad d=10 \quad$ and $\quad e=9$
Find the value of each expression.
(a) $a+4$
(b) $\mathrm{b}-8$
(c) $\mathrm{c}+\mathrm{e}$
(d) $a-d$
(e) $\mathrm{d}-\mathrm{c}$
(f) 2 c
(g) $7 a$
(h) -7 b
(i) $2 \mathrm{~d}+3 \mathrm{c}$
(j) $6 e+3 a$
(k) $5 \mathrm{a}+7$
(l) $20+4 a$
(m) ac
(n) $40-\mathrm{d}$
(o) $2 \mathrm{e}-\mathrm{a}$
(p) $b d+a$
(q) $\frac{a}{2}$
(r) $\frac{d}{4}$
(s) \sqrt{e}
(t) c^{2}

Substitution

Video 20 on www.corbettmaths.com

Question 4: If $a=1.5 \quad b=4 \quad c=6 \quad d=0.5$ and $e=-3$
Find the value of each expression.
(a) $4(a+d)$
(b) $5(\mathrm{c}+\mathrm{b})$
(c) $3(10-e)$
(d) abc
(e) e^{3}
(f) d^{2}
(g) $5 b^{2}$
(h) $8 \mathrm{e}^{2}+3$
(i) $\frac{b+2}{3}$
(j) $\frac{2 c-e}{4}$
(k) $\frac{10 d+4 b}{7}$

Question 5: $\quad \mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W}, \quad$ work out P if $\mathrm{L}=8$ and $\mathrm{W}=3$.

Question 6: $C=15 h+30$, work out C if $h=6$.

Apply

Question 1: The cost of hiring a car for a number of days is calculated using the formula
Hire Cost $=30 \mathrm{x}$ Number of Days +50
(a) Calculate the cost of hiring a car for 4 days.

(b) Calculate the cost of hiring a car for 9 days.
(c) The hire cost is $£ 110$, how many days was the car hired for?
(d) The hire cost is $£ 380$, how many days was the car hired for?

Question 2: The cost of photocopying is given as:
Cost in pence $=3 \mathrm{x}$ number of black \& white pages +15 x number of colour pages
(a) Ella orders 20 black \& white pages and 6 colour pages, work out the cost.
(b) Tom orders 400 black \& white pages and 70 colour pages, work out the cost.

Question 3: The time in minutes, taken to cook a chicken is given by the formula Time $=40$ minutes per kilogram plus 20 minutes
(a) Work out the time taken to cook a 5 kg chicken.

(b) Work out the time taken to cook a 2.5 kg chicken.

Substitution

Video 20 on www.corbettmaths.com

Question 4: This formula is used to calculate the weekly pay of a letting agent.
Weekly pay = basic pay + number of houses rented x bonus
The basic pay is $£ 400$ and a bonus of $£ 75$ is paid for each house rented. Mrs Lewis rents out 5 houses in one week.
Calculate her pay.

Question 5: This formula can be used to convert between Celsius and Fahrenheit:
$\mathrm{F}=1.8 \mathrm{C}+32$
(a) Work out the value of F when $\mathrm{C}=10$
(b) Work out the value of F when $\mathrm{C}=20$
(c) Work out the value of F when $\mathrm{C}=4$
(d) Work out the value of C when $\mathrm{F}=35.6$
(e) Work out the value of C when $\mathrm{F}=41$
(f) Work out the value of C when $\mathrm{F}=112$
(g) Find a temperature when F and C are the same value.

Answers

Click here

Scan here moths

Examples

Workout

Click here

Scan here

Question 1: Simplify each of the following
(a) $y+y+y+y$
(b) $w+w+w+w+w$
(c) $a+a+a+a+a+a$
(d) $\mathrm{s}+\mathrm{s}+\mathrm{s}$
(e) $n+n$
(f) $g+g+g+g-g$
(g) $y+y+y+y-y-y$
(h) $p+p-p-p$
(i) $3 y+2 y$
(j) $4 a+3 a$
(k) $9 \mathrm{k}+5 \mathrm{k}$
(l) $7 m+m$
(m) $15 \mathrm{c}+20 \mathrm{c}$
(n) $6 w-3 w$
(o) $10 y+3 y-5 y$
(p) $20 t-14 t$
(q) $7 x-3 x-x$
(r) $8 \mathrm{k}-8 \mathrm{k}$
(s) $7 \mathrm{y}-2 \mathrm{y}+\mathrm{y}$
(t) $5 u-4 u$
(u) $y^{2}+y^{2}$
(v) $a^{2}+a^{2}+a^{2}$
(w) $c^{2}+c^{2}+c^{2}+c^{2}+c^{2}$
(x) $7 y^{2}+3 y^{2}$
(y) $2 w^{2}+4 w^{2}+8 w^{2}$
(z) $6 y^{2}-2 y^{2}+3 y^{2}$

Question 2: Simplify the following expressions
(a) $4 u-6 u$
(b) $8 w-9 w$
(c) $4 a+2 a-9 a$
(d) $2 y-9 y$
(e) $-3 \mathrm{~g}-2 \mathrm{~g}$
(f) $-4 f+9 f$
(g) $-m-7 m$
(h) $5 y^{2}-7 y^{2}$
(i) $6 a^{2}+2 a^{2}-9 a^{2}$
(j) $a b+a b+a b$

Question 3: Simplify the following expressions
(a) $3 \mathrm{a}+2 \mathrm{~b}+4 \mathrm{a}+\mathrm{b}$
(b) $7 \mathrm{y}+5 \mathrm{y}+2 \mathrm{~h}+2 \mathrm{~h}$
(c) $g+8 a+2 a+g$
(d) $7 m+7 p+8 m+p+2 p$
(e) $9 \mathrm{e}+2+\mathrm{e}+2$
(f) $4+3 \mathrm{a}+2 \mathrm{a}+8$
(g) $2 y+4+3 y-1$
(h) $8+3 w-w-3$
(i) $5-4 \mathrm{~s}-2+10 \mathrm{~s}$
(j) $3 x+6 y+5 x-2 y$
(k) $6 m-2 s+11 s+m$
(l) $2 \mathrm{a}+3 \mathrm{~b}-2+\mathrm{a}+3 \mathrm{~b}+4$
(m) $3 \mathrm{a}-2 \mathrm{~b}+\mathrm{a}-5 \mathrm{~b}$
(n) $2 x-2 y-6 x+5 y$
(o) $y-4 m-3 y-5 m$
(p) $7 \mathrm{p}-2 \mathrm{q}-\mathrm{q}+3 \mathrm{r}+4 \mathrm{r}$
(q) $11 c+8 d-6 c-11 d$

Collecting Like Terms
 Video 9 on www.corbettmaths.com

Question 4: Simplify the following
(a) $3 y^{2}+4 a b+7 y^{2}+a b$
(b) $9 x^{2}-2 x-11 x^{2}+5 x$
(c) $7 \mathrm{ac}-3 \mathrm{ab}+9 \mathrm{ab}-7 \mathrm{ac}$

Question 5: Expand and simplify the following
(a) $2(y+3)+3(y+1)$
(b) $8(x+2)+3(x+3)$
(c) $4(x-1)+2(x+3)$
(d) $5 x+3+2(x+9)$
(e) $3(2 y+1)+4(2 y+5)$
(f) $5(2 x+3)+2(3 x+1)$
(g) $7(\mathrm{c}+2)+3(\mathrm{c}-2)$
(h) $5(2 a+7)+2(9 a-4)$
(i) $9(t+3)+3(2 t-11)$
(j) $2(x-4)+5(x-2)$
(k) $6(y-1)-2(y+3)$
(l) $8(x+2)-3(x-2)$
(m) $5(2 y-3)+3(y-2)$
(n) $2(4 w-5)-2(w-7)$
(o) $5(3 y+7)-3(2 y-5)$

Apply

Question 1: Write down the perimeter of each shape below
(a)

(b)

(c)

Question 2: A square has a side length of 3x.
Find an expression for the perimeter of the square.
Question 3: $\quad 6 x+7 y+x-8 y=7 x-y$
Write down three other expressions that are equal to $7 x-y$

Question 4: Find an expression for the perimeter of this shape

Answers

 moths
Metric Units
 Videos 349a, 349b, 349c on Corbettmaths

Workout

Question 1: Convert the following lengths into centimetres (cm)
(a) 4 m
(b) 9 m
(c) 12 m
(d) 59 m
(e) 750 m
(f) 105 m
(g) 2.5 m
(h) 8.2 m
(i) 1.53 m
(j) 0.6 m
(k) 0.38 m
(l) 0.03 m

Question 2: Convert the following lengths into metres (m)
(a) 300 cm
(b) 700 cm
(c) 900 cm
(d) 1400 cm
(e) 250 cm
(f) 740 cm
(g) 1000 cm
(h) 348 cm
(i) 80 cm
(j) 70 cm
(k) 53 cm
(l) 2 cm

Question 3: Convert the following lengths into centimetres (cm)
(a) 60 mm
(b) 30 mm
(c) 65 mm
(d) 87 mm
(e) 280 mm
(f) 812 mm
(g) 2030 mm
(h) 9000 mm
(i) 7 mm
(j) 4 mm
(k) 1.3 mm
(l) 0.6 mm

Question 4: Convert the following lengths into millimetres (mm)
(a) 2 cm
(b) 6 cm
(c) 4.5 cm
(d) 9.2 cm
(e) 13 cm
(f) 78 cm
(g) 124 cm
(h) 520 cm
(i) 0.5 cm
(j) 0.2 cm
(k) 0.8 cm
(l) 0.16 cm

Question 5: Convert the following lengths into metres (m)
(a) 4 km
(b) 9 km
(c) 13 km
(d) 28 km
(e) 125 km
(f) 300 km
(g) 7000 km
(h) 7200 km
(i) 0.5 km
(j) 0.8 km
(k) 1.2 km
(1) 2.6 km
(m) 0.07 km
(n) 0.02 km
(o) 0.006 km
(p) 1.008 km

Question 6: Convert the following lengths into kilometres (km)
(a) 6000 m
(b) 2000 m
(c) 5500 m
(d) 6400 m
(e) 800 m
(f) 600 m
(g) 450 m
(h) 125 m
(i) 70 m
(j) 90 m
(k) 35 m
(l) 4 m
(m) 90000 m
(n) 40000 m
(o) 340000 m
(p) 90530 m

Question 7: Convert the following lengths
(a) 2 m into mm
(b) 8 m into mm
(c) 6500 mm into m
(d) 9000 mm into m
(e) 48000 cm into km
(f) 9250000 cm into km
(g) 780 mm into m
(h) 4 km into cm
(i) 1 km into mm
(j) 25000000 mm into $\mathrm{km}(\mathrm{k}) 0.5 \mathrm{~km}$ into cm
(l) 0.023 km into mm

Question 8: Convert the following into grams
(a) 2 kg
(b) 7 kg
(c) 19 kg
(d) 20 kg
(e) 1.5 kg
(f) 2.4 kg
(g) 4.7 kg
(h) 0.5 kg
(i) 0.8 kg
(j) 0.16 kg
(k) 0.03 kg
(1) 0.008 kg

Question 9: Convert the following into kilograms
(a) 7000 g
(b) 3000 g
(c) 12000 g
(d) 40000 g
(e) 3945 g
(f) 600 g
(g) 850 g
(h) 735 g
(i) 60 g
(j) 75 g
(k) 2 g
(1) 78.1 g

Question 10: Convert the following into kilograms
(a) 5 tonnes
(b) 8 tonnes
(c) 15 tonnes
(d) 0.6 tonnes
(e) 1.6 tonnes
(f) 9.25 tonnes
(g) 0.3 tonnes
(h) 0.06 tonnes

Metric Units

Videos 349a, 349b, 349c on Corbettmaths

Question 11: Convert the following into millilitres
(a) 2 litres
(b) 6 litres
(c) 24 litres
(d) 1.8 litres
(e) 0.6 litres
(f) 0.125 litres
(g) 0.07 litres
(h) 2.05 litres

Question 12: Convert the following into litres
(a) 8000 ml
(b) 3000 ml
(c) 76000 ml
(d) 750 ml
(e) 540 ml
(f) 121 ml
(g) 88 ml
(h) 1035 ml

Question 1: Jack is 1.36 metres tall.
His friend Ian is 5 centimetres taller than Jack.
What height is Ian? Give your answer in metres.

Question 2: Mary runs 600m every day.
Work out how far Mary runs in one week.
Give your answer in kilometres.
Question 3: Karl is baking a loaf of bread and needs 0.8 kg of flour.
He has 72 grams of flour.
How much more flour does Karl need?
Give your answer in grams.

Question 4: James and Jack buy a 3 litre carton of orange juice.
Each boy drinks 650 ml of orange juice.
How much orange juice is left?
Give your answer in litres.
Question 5: Rebecca has two dogs, Lucky and Pepe.
Lucky weighs 5.4 kilograms.
Pepe is 800 grams lighter than Lucky.
Work out how much Pepe weighs.

State your units.

Question 6: A 2 p coin has a mass of 7 grams.
Find the total mass of $£ 80$ worth of 2 p coins.
Give your answer in kilograms.

Perimeter: On a Grid
 Video 242 on www.corbettmaths.com

Question 1: The following shapes are drawn on centimetre-squared paper.
Find the perimeter of each shape.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: The following shapes are drawn on centimetre-squared paper.
Find the perimeter of each shape.
(a)

(d)

(b)

(e)

(c)

(f)

Perimeter: On a Grid

Question 1: On centimetre-square paper, draw a rectangle with a perimeter of 14 cm
Question 2: On centimetre-square paper, draw three different rectangles with an perimeter of 18 cm

Question 3: A square has a perimeter of 24 cm .
(a) Draw this square on centimetre-square paper.
(b) Find the area of the square.

Question 4: A rectangle has an area of $12 \mathrm{~cm}^{2}$.
(a) Draw three possible rectangles on centimetre-square paper.
(b) Find the perimeter of three rectangles.

Question 5: A square has an area of $49 \mathrm{~cm}^{2}$
(a) Draw this square on centimetre-square paper.
(b) Find the perimeter of the square.

Question 6: Draw a shape that has one line of symmetry and a perimeter of 10 cm
Question 7: Jasmine says the perimeter of this shape is 12 cm .
Explain her mistake.

Question 8: An "equable" shape is a shape where the area and perimeter of the shape have the same numerical value.

The shape shown has an area of $26 \mathrm{~cm}^{2}$ and a perimeter of 26 cm .

Draw four more equable shapes.

Question 9: Martin has drawn the shape below. He says it is possible to draw a shape with the same area but a larger perimeter. Show Martin is correct.

Perimeter

Video 241 on www.corbettmaths.com

Click here

Scan here

Question 1: Work out the perimeter of each shape below
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: Find the perimeter of each of these rectangles.
(a)
6 cm

(c)

(b)

(d)
1.8 m

(e)
105m

(f)

Question 3: Work out the perimeter of each of these squares
(a)
15 cm
(b)
34 cm

(c) 0.9 m

Perimeter
 Video 241 on www.corbettmaths.com

Corbett moths

Question 4: Work out the perimeter of each of these equilateral triangles
(a)

(b)

(c)

(d)

Question 5: Calculate the perimeter of each of these isosceles triangles
(a)

(b)

(c)

Question 6: Work out the perimeter of each of these regular shapes
(a)

(b)

(c)

Question 7: Find the perimeter of each of these shapes
(a)

(b)

(c)

(d)

(e)

Perimeter

Video 241 on www.corbettmaths.com

Question 8: The perimeter of each shape is given. Find the length of the missing side
(a)

Perimeter $=26 \mathrm{~cm}$
(b)

Perimeter $=80 \mathrm{~cm}$
(c)

Perimeter $=20 \mathrm{~cm}$
(d)

Perimeter $=25 \mathrm{~cm}$
(e)

Perimeter $=36 \mathrm{~cm}$
(f)

Perimeter $=79 \mathrm{~cm}$

Perimeter $=45 \mathrm{~cm}$
(h)

(i)

Perimeter $=163 \mathrm{~cm}$
Question 1: The square is drawn accurately Find the perimeter of the square.

Question 2: A rectangle has a perimeter of 18 cm .
Write down a possible pair of values for its length and width

Question 3: The triangle and square have the same perimeter. Find x

Question 4: Shown is a rectangle.
Work out the perimeter of the rectangle.
$8 m$

Perimeter

Video 241 on www.corbettmaths.com

Question 5: The length of a rectangular field is 60 m greater than the width of the field.
The field has a length of 310 m .
Find the perimeter of the field.

Question 6: Felicity wants to place a wooden fence around her vegetable garden.
Each metre of fencing costs $£ 5.80$
Work out the cost of the new fence

Question 7: Below is a coffee table.
The length of the table is 40 cm more that the width of the table.
The perimeter of the table is 3.8 m

Find the size of the length and width of the table

Question 8: Shown is an equilateral triangle with side length of 8 cm .
Six of the triangles are put together to make a larger shape.
Find the perimeter of the larger shape.

Question 9: A square has an area of $36 \mathrm{~cm}^{2}$
Find the perimeter of the square.

Question 10: Andy says that all rectangles with an area of $24 \mathrm{~cm}^{2}$ have the same perimeter Show that Andy is wrong.

Perimeter

Video 241 on www.corbettmaths.com

Question 11: A rectangle is divided into two shapes, A and B
(a) Which of these statements is true?

- The area of A is greater than the area of B
- The area of A is less than the area of B
- The area of A is the same as the area of B
(b) Which of these statements is true?
- The perimeter of A is greater than the perimeter of B
- The perimeter of A is less than the perimeter of B
- The perimeter of A is the same as the perimeter of B

10 cm

Question 12: An isosceles triangle has a perimeter of 73 cm
An equilateral triangle has a perimeter of 51 cm The triangles are put together to make a kite.

Work out the perimeter of the kite.

Question 13: Three congruent rectangles, are placed together to make the shape below.

Find the perimeter of the shape.

Question 14: ABCD is a trapezium
$A D$ is twice the length of $A B$
$B C$ is 3 cm longer than $A D$
$D C$ is 19 cm longer than $A B$
The perimeter of the trapezium is 49 cm

Find the length of $A B$

Click here

Scan here

Question 1: The following shapes are drawn on centimetre-squared paper.
Find the area of each shape.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: The following shapes are drawn on centimetre-squared paper.
Find the area of each shape.
(a)

(b)

(c)

Question 3: The following shapes are drawn on centimetre-squared paper. Estimate their areas.
(a)

(b)

(c)

Area: On a Grid
 Video 43 on www.corbettmaths.com

Apply

Question 1: On centimetre-square paper, draw a rectangle with an area of $10 \mathrm{~cm}^{2}$
Question 2: On centimetre-square paper, draw three different rectangles with an area of $12 \mathrm{~cm}^{2}$

Question 3: A square has an area of $25 \mathrm{~cm}^{2}$.
(a) Draw this square on centimetre-square paper.
(b) Find the perimeter of the square.

Question 4: A rectangle has an area of $30 \mathrm{~cm}^{2}$.
(a) Draw two possible rectangles on centimetre-square paper.
(b) Find the perimeter of both rectangles.

Question 5: A square has a perimeter of 12 cm
(a) Draw this square on centimetre-square paper.
(b) Find the area of the square.

Question 6: Draw a shape that has one line of symmetry and an area of $8 \mathrm{~cm}^{2}$
Question 7: Draw a shape that has two lines of symmetry and an area of $10 \mathrm{~cm}^{2}$
Question 8: Jasmine says the area of this shape is 10 cm . Explain her mistake.

Answers

Click here

Scan here

Question 1: Calculate the area of each of these rectangles
(a)

(b)

(c)

(d)

(e)
(f)
(g)
(h)

50 cm
(i)

(j)

(k)

(1)
65 cm

Question 2: Work out the area of each of these squares
(a)

(b)

(c)

(d) 14 cm

Question 3: Work out the area of each of these rectangles
(a)

(b)

(c)

(d)

(e)

(f)
(g)
(h)

Area of a Rectangle
 Video 45 on Corbettmaths

Question 4: Work out the area of each of these rectangles.
State your units for each answer.
(a)

(b)
(c)
(d)

(e)
70 cm

(f)
(g)

Question 5: The area of each of these rectangles have been given.
Find the length of the missing sides.
(a)

(c)
15 mm
(b)

(e)
(f)

(g)

(h)

(i)

(j)

(k)

Question 2: A piece of paper has a length of 18 cm and a width of 6 cm .
Find the area of paper.

Question 3: A rectangle has an area of $30 \mathrm{~cm}^{2}$
Write down the length and width of three rectangles with an area of $30 \mathrm{~cm}^{2}$

Question 4: These two rectangles have the same area.
Find the length of the second rectangle.

Question 5: A rectangle has an area of $80 \mathrm{~cm}^{2}$ and a perimeter of 48 cm .
Find the length and width of the rectangle.

Question 6: A rectangle has an area of $100 \mathrm{~cm}^{2}$ and a perimeter of 104 cm .
Find the length and width of the rectangle.

Question 7: Mr Jenkins has a grass lawn that is 24 m wide and 30 m long.
Mr Jenkins cuts the grass at a rate of $9 \mathrm{~m}^{2}$ per minute.
How long will it take Mr Jenkins to cut all the grass?

Question 8: A football pitch is 110 m long and has a perimeter of 360 m . Find the area of the football pitch.

Question 9: A rectangular room is 14 m long and 8 m wide.
Jessica is going to carpet the room with carpet that costs $£ 17.50$ per square metre.
Work out the cost of carpeting the room.

Area of a Rectangle
 Video 45 on Corbettmaths

Question 10: Mr Harris is tiling his bathroom floor.
The bathroom floor is a rectangle measuring 4 m by 2 m .
Each tile is 20 cm by 20 cm .

How many tiles does he need?

Question 11: Henry is tiling his kitchen wall.
The kitchen wall is a rectangle measuring 7 m by 2 m .
Each tile is 50 cm by 50 cm .

How many tiles does he need?

Question 12: Mrs Rodgers is tiling her bathroom wall.
The bathroom wall is 360 cm long and 240 cm high.
Each tile is 20 cm by 20 cm

The tiles are sold in boxes of 6 .
Each box costs $£ 8$.
How much will it cost Mrs Rodgers to tile her bathroom wall?

Question 1: Find the area of each triangle.
(a)

(b)

(c)

(d)

(e)

(f)

Question 2: Find the area of each triangle.
(a)

(b)

(c)

(d)

(e)

(f)

Question 3: Find the area of each triangle.
(a)

(b)

(c)

Area of a Triangle
 Video 49 on Corbettmaths

(d)

(e)

(f)

Question 4: Find the area of the triangle with a base of 12 cm and perpendicular height of 9 cm .

Question 5: Find the area of the triangle with a base of 9 cm and perpendicular height of 14 cm .

Question 6: Find the area of the triangle with a base of 19 cm and perpendicular height of 7 cm .

Question 7: The area of the triangle is $20 \mathrm{~cm}^{2}$, find x .

Question 8: The area of the triangle is $30 \mathrm{~cm}^{2}$, find y .

Question 9: The area of the triangle is $12 \mathrm{~cm}^{2}$, find z .

Question 10: The area of the triangle is $56 \mathrm{~cm}^{2}$, find a.

Area of a Triangle

Video 49 on Corbettmaths

Question 11: The area of the triangle is $165 \mathrm{~cm}^{2}$, find b .

Apply

Question 1: Shown is a square garden with a triangular pond.
Find the area of the garden that is grass.

Question 2: Shown is a triangular brick wall with a rectangular window.
Find the area of the wall that is brick.

Question 3: Shown is a pattern that is made from a rectangle and a triangle.
Find the area of the pattern.

Area of a Triangle

Video 49 on Corbettmaths

Question 4: Shown below is a triangular field.
Each chicken requires $3 \mathrm{~m}^{2}$.
How many chickens can be kept in this field?

$14 m$

18m

Question 5: Shown below is a wall.
Calculate the area of the wall.

Question 6: Shown below is a logo made from a square and two triangles. Calculate the area of the logo.

Click here

Scan here

St Andrew's Academy

Mathematics Department

BLOCK THREE

Number	Algebra	Fractions 1
- Multiples. - Factors. - Prime Numbers. - Prime Decomposition. - Prime Decomposition with LCM and HCF.	- Equations with terms on both sides. - Multiplying algebraic terms. - Removing single brackets.	- Identifying fractions. - Equivalent fractions - Simplifying fractions. - Fractions of an amount. - Adding and Subtracting fractions with the same denominator.

Examples

Workout

Video 220 on www.corbettmaths.com

Click here

Scan here

Question 1: Write down the first six multiples of these numbers
(a) 5
(b) 3
(c) 4
(d) 10
(e) 7
(f) 9
(g) 11
(h) 20
(i) 100
(j) 50
(k) 12
(l) 35

Question 2: Below is a list of numbers.

12	15	17	20	22	25	27	30	32	35	39	40

From the list write down any numbers that are multiples of:
(a) 2
(b) 5
(c) 10
(d) 3
(e) 4
(f) 8

Question 3: List all the numbers between 40 and 60 (inclusive) that are multiples of:
(a) 5
(b) 3
(c) 6
(d) 8
(e) 9
(f) 14

Question 4: Below is a list of numbers.

$$
\begin{array}{llllllllll}
100 & 101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109
\end{array}
$$

From the list write down any numbers that are multiples of:
(a) 2
(b) 3
(c) 5
(d) 10
(e) 4
(f) 15

Question 5: (a) List the first ten multiples of 3.
(b) List the first ten multiples of 4.
(c) Write down any numbers listed that are multiples of both 3 and 4.

Question 6: (a) List the first ten multiples of 5.
(b) List the first ten multiples of 6 .
(c) Write down any numbers listed that are multiples of both 5 and 6.

Question 7: (a) List the first ten multiples of 6.
(b) List the first ten multiples of 9 .
(c) Write down any numbers listed that are multiples of both 6 and 9 .

Multiples

Video 220 on www.corbettmaths.com

Question 8: Write down three common multiples of 8 and 12.
Question 9: Write down three common multiples of 4 and 6.

Question 10: Write down three common multiples of 15 and 20.

Apply

Question 1: A light flashes every 8 seconds. How many times will it flash in 3 minutes?
Question 2: Find the smallest number over 200 that is a multiple of 6.

Question 3: Copy the Venn diagram below.
Place these numbers into the Venn diagram: 8, 10, 12, 13, 20, 22, 25, 40, 50

Question 4: Find the first even number that is a multiple of 5 and 7.

Question 5: A crate can hold 12 cans of lemonade.
Thomas has 200 cans of lemonade.
How many crates can be filled?

Question 6: Find a number that is a multiple of 2, 3, 4, 5 and 6.

Answers

Click here

Scan here

Click here

Factors

Video 216 on Corbettmaths

Question 1: List all the factors of these numbers
(a) 8
(b) 10
(c) 7
(d) 12
(e) 20
(f) 22
(g) 18
(h) 50
(i) 15
(j) 19
(k) 30
(l) 100
(m) 32
(n) 24
(o) 42
(p) 28
(q) 66
(r) 70
(s) 45
(t) 60
(u) 25

Question 2: Is 3 a factor of.... ?
(a) 14
(b) 21
(c) 27
(d) 32
(e) 57
(f) 301
(g) 100

Question 3: Is 5 a factor of.... ?
(a) 20
(b) 34
(c) 40
(d) 38
(e) 45
(f) 102
(g) 135

Question 4: List all the factors of these numbers (you may use a calculator)
(a) 84
(b) 140
(c) 200
(d) 240
(e) 145
(f) 192
(g) 244

Question 5: Is 9 a factor of.... ?
(a) 38
(b) 90
(c) 72
(d) 108
(e) 909
(f) 9001
(g) 293

Apply

Question 1: $21 \quad 25 \quad 30 \quad 45$
Which number is the odd one out? why?
Question 2: $\begin{array}{lllll}15 & 24 & 28 & 33\end{array}$
Which number is the odd one out? why?
Question 3: Mary has 26 sweets and is able to share them evenly between her friends. Mary has more than 1 friend.
Write down how many friends Mary might have.
Question 4: James says that all numbers have an even number of factors.
Is he correct?

Answers

Scan here

Workout

Click here

Scan here

Question 1: List the first ten prime numbers
Question 2: Are the numbers below, prime or not prime?
(a) 5
(b) 9
(c) 10
(d) 11
(e) 13
(f) 15
(g) 19
(h) 21
(i) 22
(j) 30
(k) 31
(l) 44
(m) 49
(n) 29
(o) 35
(p) 1
(q) 39
(r) 27

Question 3: From the box, choose:
(a) the smallest prime number
(b) a prime number that is greater than 10
(c) an even prime number
(d) the largest prime number
(e) three numbers that are not prime

7		19		2
	17		81	
9	1		27	99
	101		100	55

Apply

Question 2: Use divisibility tests to see if any of these numbers are prime.
(a) 90
(b) 96
(c) 85
(d) 63
(e) 79
(f) 77

Question 3: Find three different prime numbers that have a sum of 40.

Question 4: Find three different prime numbers that have a product of 165

Prime Numbers

Question 5: Goldbach's conjecture states
"every even number greater than 2 can be written as the sum of two primes."
Test this conjecture for all the even numbers up to 50 .

Answers

Workout

Click here

Scan here

Question 1: Write each of these numbers as the product of their prime factors.
(a) 10
(b) 12
(c) 20
(d) 18
(e) 16
(f) 30
(g) 100
(h) 26
(i) 24
(j) 27
(k) 42
(l) 33
(m) 38
(n) 64

Question 2: Write each of these numbers as the product of their prime factors. Give your answers in index form.
(a) 36
(b) 40
(c) 28
(d) 48
(e) 80
(f) 200
(g) 75
(h) 32
(i) 105
(j) 81
(k) 52
(l) 242
(m) 108
(n) 500

Question 3: Some numbers have been written as products of their prime factors. Work out each number.
(a) 2×7
(b) $2 \times 3 \times 5$
(c) $2 \times 5 \times 11$
(d) $2 \times 2 \times 2 \times 3$
(e) $2^{2} \times 5$
(f) 3×5^{2}
(g) $2^{3} \times 3^{2}$
(h) $3^{2} \times 11$
(i) 5^{4}
(j) $2^{4} \times 5^{2}$
(k) $3^{3} \times 13$
(l) 7×17^{2}

Question 4: Write each of these numbers as the product of their prime factors.
(a) 9000
(b) 235
(c) 392
(d) 715
(e) 444
(f) 792
(g) 5625

Apply

Question 1: Using the fact that $12=2^{2} \times 3$, write each of the following as the product of prime factors in index form.
(a) 24
(b) 36
(c) 60
(d) 48
(e) 120
(f) 84

Product of Primes

Video 223 on www.corbettmaths.com

Question 2: Using the fact that $300=2^{2} \times 3 \times 5^{2}$, write each of the following as the product of prime factors in index form.
(a) 600
(b) 150
(c) 900
(d) 3300
(e) 1500
(f) 2400

Question 3: Ashley has completed his homework. Can you spot any mistakes?

Express 36 as a product of its prime factors.

Write 24 as the product of its prime factors. Give your answer in index form.

Question 4: (a) Write 980 as a product of prime factors. Express your answer in index form.
(b) Find the lowest number by which 980 would need to be multiplied by to give a square number.

Question 5: (a) Write 480 as a product of prime factors. Express your answer in index form.
(b) Find the lowest number by which 480 would need to be multiplied by to give a square number.

Question 6: (a) Write 2646 as a product of prime factors. Express your answer in index form.
(b) Find the lowest number by which 2646 would need to be multiplied by to give a cube number.

Click here

Product of Primes: LCM and HCF
 Video 224 on www.corbettmaths.com

Examples

Click here

Scan here

Workout

Question 1: Find the lowest common multiple (LCM) of each pair of numbers.
(a) 15 and 35
(b) 14 and 22
(c) 15 and 21
(d) 9 and 33
(e) 12 and 15
(f) 18 and 30
(g) 16 and 20
(h) 24 and 30
(i) 16 and 36
(j) 26 and 39
(k) 25 and 30
(l) 16 and 18
(m) 24 and 56
(n) 36 and 45
(o) 60 and 72
(p) 42 and 90

Question 2: Find the highest common factor (HCF) of each pair of numbers
(a) 21 and 49
(b) 35 and 45
(c) 18 and 24
(d) 18 and 45
(e) 30 and 75
(f) 28 and 42
(g) 60 and 90
(h) 48 and 64
(i) 56 and 72
(j) 18 and 23
(k) 84 and 96
(l) 38 and 95
(m) 66 and 121
(n) 56 and 140
(o) 180 and 225
(p) 64 and 224

Apply

Question 1: Given $60=2^{2} \times 3 \times 5$ and $84=2^{2} \times 3 \times 7$
Find (a) the lowest common multiple (LCM)
and (b) the highest common factor (HCF)
Question 2: Find the lowest common multiple (LCM) of 15, 20 and 25.

Product of Primes: LCM and HCF
 Video 224 on www.corbettmaths.com

Question 3: A red light flashes every 28 seconds.
A green light flashes every 24 seconds.
They both flash at the same time.
After how many seconds will they next both flash at the same time?
Question 4: A bus heading to Belfast leaves Antrim every 36 minutes.
A bus heading to Ballymena leaves Antrim every 45 minutes
At 10am bus to Belfast and a bus to Ballymena both leave Antrim Bus Station.
Work out the next time that both buses leave at the same time.

Question 5: Find the lowest common multiple of 124 and 200.

Question 6: The LCM of two numbers is 130.
The HCF of the same two numbers is 13 .
Both numbers are less than 100.
Write down two possible numbers.

Question 7: Fred says that 20 and 21 have got a highest common factor of 0 . Explain why Fred is wrong.

Question 8: Abby and Annie have the same number of coins.
Abby has sorted her coins into groups of 80.
Annie has sorted her coins into groups of 75.
They each have less than 2000 coins.
How many coins do they altogether?

Question 9: Adam is working out the highest common factor of 100 and 112.
He has worked it out to be 22.
Can you explain what he has done wrong?

Answers

Click here

Scan here

Equations: Letters on Both Sides

Video 113 on www.corbettmaths.com

Click here

Scan here

Question 1: Solve the following equations
(a) $4 x+1=2 x+7$
(b) $5 x+4=3 x+16$
(c) $2 x+8=x+12$
(d) $7 x+1=2 x+46$
(e) $6 x-3=2 x+13$
(f) $9 x-10=7 x+24$
(g) $2 x+21=4 x+5$
(h) $x+2=5 x-2$
(i) $6 x-9=4 x-1$
(j) $5 x+2=16-2 x$
(k) $3 x-1=23-x$
(l) $6 x+8=38-4 x$
(m) $80-x=8 x-1$
(n) $2 x+7=17-8 x$
(o) $15-x=27-3 x$
(p) $12 x-20=15 x-38$
(q) $35 x+10=20 x+175$
(r) $14 x=2 x+60$

Question 2: Solve the following equations
(a) $3 x+3=x+8$
(b) $9 x+10=7 x+39$
(c) $3 x+1=7 x-17$
(d) $x+4=13-x$
(e) $16 x+3=6 x+24$
(f) $9 x+12=6 x+14$
(g) $7 x+24=12 x-12$
(h) $2 x+9=48-6 x$
(i) $34-12 x=28 x-36$

Question 3: Solve the following equations
(a) $4 x+15=x+3$
(b) $8 x+40=3 x+5$
(c) $9 x+7=11 x+20$
(d) $7 x+9=2 x-16$
(e) $9 x-70=2 x-91$
(f) $4-5 x=3 x+28$
(g) $10 x+136=-8-2 x$
(h) $-6 x+2=-4 x+10$
(i) $-11 x-4=-3 x+60$

Question 4: Solve the following equations
(a) $5(x+3)=3(x+9)$
(b) $8(x-1)=4(x+3)$
(c) $3(x+13)=10(x-1)$
(d) $2(4 x-3)=5(2 x-5)$
(e) $9(2 x-5)=3(4 x+7)$
(f) $2(9-x)=3(x+16)$
(g) $5(2 x+9)+2(x+11)=3(3 x+4)+46$
(h) $8(x-2)-3(1-x)=9(x+2)+1$

Apply

Question 1: Shown is a rectangle
(a) Explain why $9 x+12=4 x+47$

Question 2: Shown is an isosceles triangle
(a) Explain why $4 x+15=33-2 x$
(b) Find x

$5 x$
(c) Find the perimeter of the isosceles triangle

Question 3: Explain why $8 \mathrm{x}+3=2(4 \mathrm{x}+1)$ has no solution.

Question 4: (a) Find the value of x
(b) Find the value of y

[^0]
Equations: Letters on Both Sides
 Video 113 on www.corbettmaths.com

Question 5: Shown below is a function machine.
The input and output have the same value.

(a) Write an equation in terms of x .
(b) Solve the equation to find the value of x .

Question 6: Toby has completed his homework. Can you spot any mistakes?
(a)

Solve $7 x-5=5 x+23$
$-5 x \quad-5 x$
$2 x-5=23$
-5 -5
$2 x=18$
$\div 2 \div 2$
$x=9$

Click here
(b)

Solve $3 x+11=41-2 x$
$-2 x \quad-2 x$
$x+11=41$
-11 -11
$x=30$

Workout

Click here

Scan here

Question 1: Simplify the following expressions.
(a) $3 \times y$
(b) $w \times 3$
(c) $7 \times x$
(d) $a \times 4$
(e) $a \times c$
(f) $\mathrm{f} \times \mathrm{g}$
(g) $h \times d$
(h) $a \times y \times m$
(i) $t \times t$
(j) $p \times p$
(k) $a \times a \times a$
(l) $m \times m \times m$
(m) $4 \times f \times g$
(n) $3 \times w \times y$
(o) $\mathrm{p} \times 5 \times \mathrm{s}$
(p) $\mathrm{n} \times \mathrm{c} \times 7$
(q) $\mathrm{t} \times \mathrm{c} \times \mathrm{w}$
(r) $y \times x \times w$
(s) $5 \times \mathrm{a} \times \mathrm{a}$
(t) $y \times 3 \times y$

Question 2: Simplify the following expressions.
(a) $5 \times 3 \mathrm{w}$
(b) $4 y \times 2$
(c) $3 \times 3 \mathrm{~m}$
(d) $10 \mathrm{~g} \times 3$
(e) $4 \times 2 \times y$
(f) $3 \times 2 \times 2 p$
(g) $5 \times 2 \mathrm{y} \times 3$
(h) $9 \mathrm{a} \times 2 \times 2$
(i) $3 a \times c$
(j) $4 y \times z$
(k) $5 \mathrm{c} \times \mathrm{b}$
(l) $c \times 6 y$
(m) $2 a \times 3 y$
(n) $6 \mathrm{c} \times 3 \mathrm{t}$
(o) $9 \mathrm{w} \times 3 \mathrm{a}$
(p) $2 \mathrm{y} \times 2 \mathrm{~g}$
(q) $2 \mathrm{y} \times \mathrm{y}$
(r) $5 \mathrm{w} \times \mathrm{w}$
(s) $m \times 3 m$
(t) $x \times 2 x$
(u) $4 t \times 2 t$
(v) $6 y \times 3 y$
(w) $9 \mathrm{a} \times 9 \mathrm{a}$
(x) $12 \mathrm{y} \times 10 \mathrm{y}$
(y) $2 a \times 3 p \times 5 w$
(z) $10 \mathrm{y} \times 2 \mathrm{p} \times 3 \mathrm{c} \times \mathrm{m}$

Question 3: Simplify the following expressions
(a) $a^{2} \times a$
(b) $\mathrm{y} \times \mathrm{y}^{2}$
(c) $w^{2} \times w^{2}$
(d) $\mathrm{m}^{2} \times \mathrm{m}^{3}$
(e) $2 \mathrm{t}^{2} \times \mathrm{t}$
(f) $4 \mathrm{~m} \times \mathrm{m}^{2}$
(g) $g \times 2 g^{2}$
(h) $\mathrm{p}^{2} \times 3 \mathrm{p}^{2}$
(i) $3 \mathrm{p}^{2} \times 2 \mathrm{p}$
(j) $2 v^{2} \times 7 v^{2}$
(k) $9 p^{2} \times 7 p^{2}$
(l) $5 w^{2} \times 2 w^{3}$
(m) $7 \mathrm{a}^{3} \times 4 \mathrm{a}^{3}$
(n) $6 c^{4} \times 5 c^{3}$
(o) $a w \times w$
(p) $r \times r y$

Multiplying Terms
 Video 18 on www.corbettmaths.com

(q) ay \times ay
(r) $c^{2} f \times f$
(s) $d g \times d^{2}$
(t) $3 x^{2} y \times 2 x$
(u) $4 a b \times 2 a b$
(v) $3 \mathrm{~m}^{2} \mathrm{n}^{2} \times 4 \mathrm{mn}$
(w) $2 \mathrm{~cd}^{2} \times \mathrm{d}^{2}$
(x) $4 a^{2} b c^{2} \times a^{3} b$
(y) $2 a d^{2} e \times a^{3} c$
(z) $8 \mathrm{~m}^{2} \mathrm{n} \times 3 \mathrm{no}^{5}$

Apply

Question 1: Find an expression for the area of this rectangle

Question 2: Find an expression for the area of this rectangle

Question 3: Find an expression for the area of this triangle

Question 4: The area of the rectangle and square are equal.
Find the side length of the square.
Not drawn to scale

Question 5: Find an expression for the area of this shape

Answers

Click here

Scan here

Workout

Expanding Brackets

Video 13 on www.corbettmaths.com

Click here

Scan here

Question 1: Expand the following brackets
(a) $5(y+3)$
(b) $4(a+2)$
(c) $8(w+10)$
(d) $3(x-7)$
(e) $9(s-1)$
(f) $2(8-t)$
(g) $7(4+h)$
(h) $10(a+2 b+3 c)$
(i) $4(3 y+2)$
(j) $5(2 p-1)$
(k) $3(7 a+2)$
(l) $9(2 x-5)$
(m) $5(4+3 t)$
(n) $7(9-2 \mathrm{c})$
(o) $8(3 w+1)$
(p) $9(1-4 p)$
(q) $11(2 \mathrm{k}-5)$
(r) $20(6 a+5 c)$
(s) $3(15 w-7)$
(t) $3(9-2 a)$

Question 2: Expand the following brackets
(a) $-2(w+5)$
(b) $-3(c+7)$
(c) $-8(c+7)$
(d) $-10(y-2)$
(e) $-7(\mathrm{~g}-3)$
(f) $-4(2 w+3)$
(g) $-9(3 w-5)$
(h) $-9(5 x-1)$
(i) $-5(6-\mathrm{c})$
(j) $-6(4+3 m)$
(k) $-2(1+9 \mathrm{c})$
(l) $-5(8 a-7 w)$

Question 3: Expand the following brackets
(a) $a(c+2)$
(b) $c(d-3)$
(c) $a(b+c)$
(d) $w(8-y)$
(e) $c(5+a)$
(f) $w(a-9)$
(g) $y(s+t)$
(h) $2 \mathrm{a}(\mathrm{c}-3)$
(i) $5 x(y+8)$
(j) $3 a(2 c+9)$
(k) $6 \mathrm{~g}(2 \mathrm{c}-1)$
(l) $9 \mathrm{k}(2+\mathrm{d})$
(m) $5(2 f+9 w)$
(n) $3 y(5 p+2)$
(o) $2 \mathrm{~s}(\mathrm{t}+1)$
(p) $-4 a(8 x-3)$

Question 4: Expand the following brackets
(a) $a(a+2)$
(b) $y(y-5)$
(c) $\mathrm{w}(\mathrm{a}+\mathrm{w})$
(d) $c(9-c)$
(e) $p(2 p+5)$
(f) $2 \mathrm{w}(3 \mathrm{w}-1)$
(g) $9 y(2 y+3)$
(h) $4 c(2 a+5 c)$

Expanding Brackets

Video 13 on www.corbettmaths.com

(i) $2 u(3-u)$
(j) $m\left(m^{2}+3\right)$
$(\mathrm{k}) \mathrm{y}\left(\mathrm{y}^{2}-7\right)$
(l) $g^{2}(g-8)$
(m) $2 w\left(w^{2}+6\right)$
(n) $4 a\left(2 a^{2}-3\right)$
(o) $5 \mathrm{c}\left(3 \mathrm{c}^{2}-\mathrm{a}\right)$
(p) $8 w\left(3 w^{2}+3 y\right)$
(q) $x^{2}\left(x^{2}+4\right)$
(r) $3 w^{2}\left(7+2 w^{2}\right)$

Question 5: Expand and simplify
(a) $5(y+3)+2(y+7)$
(b) $6(2 w+5)+9(w+2)$
(c) $3(y-2)+4(2 y+5)$
(d) $7(2 g+3)-5(g+2)$
(e) $6(x-2)-4(x-8)$
(f) $2(3 y-8)-5(2 y-1)$
(g) $8(5+2 m)+3(5-3 m)$
(h) $4(w+7)-2(2 w+1)$
(i) $9(1+2 y)+3(3-y)$

Question 6: Expand and simplify
(a) $w(w+5)+w(w+7)$
(b) $2 g(4 g+3)+g(g-7)$
(c) $n(n-4)-n(5-n)$
(d) $2 e(4 e+3)-3 e(e-5)$
(e) $a(3+c)+c(a+2)$
(f) $m(a+7)-a(4-3 m)$
(g) $8 c(8-3 a)+3(4-c)$
(h) $5 y(3 y+z)-2 y(4 y-3 z)$
(i) $4 c\left(3 c-c^{2}\right)-2 c^{2}(4-5 c)$

Apply

Question 1: Can you spot any mistakes in the questions below.
Expand $3(2 y-1) \quad$ Multiply out $x(x+3)$

$$
6 y-1 \quad 2 x+3 x=5 x
$$

Expand and simplify $6(w+3)-2(w-5)$

$$
\begin{aligned}
& 6 w+18-2 w-10 \\
= & 4 w+8
\end{aligned}
$$

Answers

Question 1: Shade in each shape by the fraction given.
(a)

Shade in $\frac{1}{3}$
(b)

Shade in $\frac{1}{4}$
(c)

Shade in $\frac{2}{3}$
(d)

Shade in $\frac{5}{9}$
(e)

Shade in $\frac{2}{7}$
(f)

Shade in $\frac{4}{5}$

Question 2: Shade in each shape by the fraction given.
(a)

Shade in $\frac{2}{3}$
(b)

Shade in $\frac{1}{5}$
(c)

Shade in $\frac{3}{4}$
(d)

Shade in $\frac{1}{4}$
(e)

Shade in $\frac{2}{3}$
(f)

Shade in $\frac{3}{5}$

Fractions of Shapes

Video 143 on www.corbettmaths.com

Question 3: Write down the fraction of each shape that is shaded.
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Apply

Question 1: Which shape is the odd one out? Explain your answer.

Shape A

Shape B

Shape C

Question 2: Jamie is trying to shade $\frac{1}{3}$ of the grid.
Each square he decides to shade, he must shade in fully.
Can he successfully shade in $\frac{1}{3}$ of the grid?
Explain your answer.

Question 1: Find the missing numbers
(a) $\frac{2}{3}=\frac{}{6}$
(b) $\frac{1}{5}=\frac{}{20}$
(c) $\frac{3}{4}=\frac{}{12}$
(d) $\frac{5}{7}=\frac{10}{}$
(e) $\frac{}{5}=\frac{15}{25}$
(f) $\quad \frac{4}{=} \frac{12}{21}$
(g) $\frac{3}{10}=\frac{}{50}$
(h) $\frac{7}{8}=\frac{14}{}$
(i) $\frac{3}{4}=\underline{30}$
(j) $\overline{8}=\frac{55}{88}$
(k) $\frac{2}{9}=\underline{10}$
(1) $\frac{2}{3}=\frac{}{18}$
(m) $\frac{1}{20}=\frac{5}{-}$
(n) $\frac{5}{6}=\frac{}{18}$
(o) $\frac{3}{8}=\frac{9}{-}$
(p) $\frac{7}{12}=\frac{}{36}$

Question 2: Find the missing numbers
(a) $\frac{6}{7}=\frac{42}{}$
(b) $\frac{9}{20}=\underline{63}$
(c) $\frac{5}{12}=\frac{35}{}$
(d) $\frac{7}{8}=\frac{}{64}$
(e) $\quad \frac{4}{=} \frac{32}{72}$
(f) $\frac{3}{4}=\frac{}{52}$
(g) $\frac{7}{25}=\frac{140}{}$
(h) $\frac{}{15}=\frac{42}{105}$
(i) $\frac{11}{16}=\underline{88}$
(j) $\frac{2}{9}=\frac{}{108}$
(k) $\frac{13}{25}=\frac{}{375}$
(1) $\underline{9}=\frac{81}{144}$

Apply

Question 1: Write down 3 different fractions that are equivalent to $\frac{1}{2}$
Question 2: Write down 3 different fractions that are equivalent to $\frac{3}{5}$
Question 3: Write down 3 different fractions that are equivalent to $\frac{7}{12}$

Equivalent Fractions

Question 4: Dave and Tom are discussing fractions. Is either man correct?

Question 5: Use the grid to explain why $\frac{3}{4}$ cannot be written as a fraction with a denominator of 15 .

Question 6: Macey has completed her maths homework. Can you explain what she has done wrong?
(a)

$$
\frac{3}{4}=\frac{4}{16}
$$

(c)
$\frac{7}{8}=\frac{35}{5}$
(b)
$\frac{3}{5}=\frac{6}{15}$
(9) $\frac{2}{8}=\frac{16}{40}$

Question 1: Simplify fully
(a) $\frac{2}{4}$
(b) $\frac{6}{9}$
(c) $\frac{6}{8}$
(d) $\frac{5}{15}$
(e) $\frac{4}{6}$
(f) $\frac{9}{12}$
(g) $\frac{10}{15}$
(h) $\frac{9}{15}$
(i) $\frac{8}{12}$
(j) $\frac{10}{14}$
(k) $\frac{15}{35}$
(1) $\frac{6}{21}$
${ }^{(\mathrm{m})} \frac{18}{22}$
${ }^{(n)} \frac{16}{20}$
(0) $\frac{9}{24}$
(p) $\frac{20}{30}$
(q) $\frac{8}{28}$
(r) $\frac{300}{500}$

Question 2: Cancel down each fraction to its simplest form
(a) $\frac{14}{35}$
(b) $\frac{8}{64}$
(c) $\frac{18}{24}$
(d) $\frac{75}{100}$
(e) $\frac{24}{80}$
(f) $\frac{6}{42}$
(g)
(h)
(i)
(j) $\frac{49}{56}$
(k) $\frac{22}{110}{ }^{\text {(l) }} \frac{18}{72}$
(m)
$\frac{36}{66} \quad \frac{18}{45}$
$\frac{70}{120}$
(q) $85 \quad(r)$
(r) $\frac{48}{36}$

Question 3: Simplify fully
(a) $\frac{145}{225}$
(b) $\frac{190}{570}$
(c) 200
(d) $\frac{230}{495}$
(e) $\frac{54}{333}$
(f) $\frac{96}{123}$

Question 1: Which fractions below are equivalent to $\frac{2}{3}$?

$$
\begin{array}{lllll}
\frac{4}{6} & \frac{6}{8} & \frac{8}{12} & \frac{9}{12} & \frac{10}{15}
\end{array}
$$

Question 2: James says that $\frac{1}{3}$ of the grid is shaded Cara says $\frac{4}{12}$ of the grid is shaded.

Explain how they are both correct.

Question 3: Given that $5 \times 13=65$ and $7 \times 13=91$ simplify fully $\frac{65}{91}$
Question 4: Freddy has 40 cupcakes.
20 of the cupcakes are chocolate.
10 of the cupcakes are lemon.
8 of the cupcakes are strawberry.
The rest of the cupcakes of vanilla.
(a) What fraction of the cupcakes are chocolate?

Give the fraction in its simplest form.

(b) What fraction of the cupcakes are lemon?

Give the fraction in its simplest form.
(c) What fraction of the cupcakes are strawberry?

Give the fraction in its simplest form.
Answers
(d) What fraction of the cupcakes are vanilla? Give the fraction in its simplest form.

Click here

Question 5: There are 200 students in a primary school. 80 students wear glasses.
What fraction of the students wear glasses? Give the fraction in its simplest form.

Question 6: Sarah has $£ 240$ and she gives her mum $£ 80$. What fraction of the money does Sarah have left? Give the fraction in its simplest form.

Workout

Fraction of an Amount

 Click here
 Scan here

Question 1: Work out each of the following
(a) $\frac{1}{2}$ of 10
(b) $\frac{1}{3}$ of 18
(c) $\frac{1}{5}$ of 20
(d) $\frac{1}{4}$ of 24
(e) $\frac{1}{9}$ of 27
(f) $\frac{1}{10}$ of 160
(g) $\frac{1}{8}$ of 80
(h) $\frac{1}{7}$ of 49
(i) $\frac{1}{2}$ of 9
(j) $\frac{1}{5}$ of 65
(k) $\frac{1}{12}$ of 72
(l) $\frac{1}{11}$ of 132

Question 2: Work out each of the following
(a) $\frac{2}{3}$ of 15
(b) $\frac{7}{10}$ of 20
(c) $\frac{2}{5}$ of 30
(d) $\frac{3}{4}$ of 32
(e) $\frac{3}{5}$ of 45
(f) $\frac{2}{7}$ of 28
(g) $\frac{3}{8}$ of 88
(h) $\frac{3}{10}$ of 120
(i) $\frac{5}{9}$ of 63
(j) $\frac{13}{20}$ of 60
(k) $\frac{2}{7}$ of 91
(l) $\frac{4}{15}$ of 120

Question 3: Work out each of the following.
Include suitable units.
(a) $\frac{1}{3}$ of $£ 21$
(b) $\frac{3}{4}$ of 100 kg
(c) $\frac{2}{3}$ of 27 cm
(d) $\frac{7}{8}$ of 32 seconds
(e) $\frac{2}{5}$ of 90 miles
(f) $\frac{5}{6}$ of $£ 150$
(g) $\frac{5}{12}$ of 240 ml
(h) $\frac{9}{10}$ of 310 students
(i) $\frac{1}{8}$ of a day
(j) $\frac{4}{5}$ of 1 km
(k) $\frac{3}{7}$ of 2 weeks
(l) $\frac{1}{500}$ of 1 m

Fraction of an Amount

Question 4: Work out each of the following.
(a) $\frac{3}{10}$ of 32 miles
(b) $\frac{2}{5}$ of 9 kg
(c) $\frac{1}{3}$ of 8 litres
(d) $\frac{3}{5}$ of $£ 7$
(e) $\frac{1}{8}$ of 50 cm
(f) $\frac{1}{5}$ of 4931 km
(g) $\frac{3}{4}$ of $£ 57$
(h) $\frac{2}{9}$ of 211 km

Question 5: Work out the largest of each of the following pairs.
(a) $\frac{1}{3}$ of 21 or $\frac{1}{2}$ of 12
(b) $\frac{1}{6}$ of 30 or $\frac{2}{3}$ of 9
(c) $\frac{2}{5}$ of 65 or $\frac{3}{4}$ of 32
(d) $\frac{1}{5}$ of 2 m or $\frac{3}{4}$ of 60 cm
(e) $\frac{3}{8}$ of a day or $\frac{1}{10}$ of 85 hours
(f) $\frac{7}{15}$ of 480 or $\frac{2}{3}$ of 453
(g) $\frac{3}{10}$ of 395 or $\frac{2}{7}$ of 420

Apply

Question 1: James has 20 sweets.
$\frac{3}{4}$ of the sweets are red.
How many sweets are red?

Question 2: In a class, there are 24 students.
$\frac{1}{8}$ of the students wear glasses.
How many students wear glasses?

Question 3: There are 40 apples in a crate.
$\frac{3}{5}$ of the apples are bad.
How many good apples are there?

Fraction of an Amount

Question 4: On Wednesday, James slept for $\frac{3}{8}$ of the day
(a) How many hours did James spend sleeping?
(b) For how many hours was James awake?
(c) What fraction of the day was James awake?

Question 5: Declan won $£ 6000$ in a competition.
He invests $\frac{2}{5}$ of the money.
How much money did Declan invest?

Question 6: Katie has $£ 1200$.
She gives $\frac{1}{3}$ of the money to her sister.
Then Katie gives $\frac{1}{4}$ of the remaining money to her brother.
How much money does Katie have left?

Question 7: The attendance at a Sheffield United match is 15,291
$\frac{2}{9}$ of the crowd are children.
How many adults attended the match?

Question 8: There are 194 students in a primary school.
Mr Wallace says that exactly $\frac{1}{4}$ of the students are left handed.
Explain why Mr Wallace must be wrong.

Question 9: Connor has saved $£ 450$.
He spends $\frac{1}{5}$ of the $£ 450$ on a new tyre for his car.
Connor spends $\frac{2}{3}$ of the $£ 450$ on a new guitar.
What fraction of the $£ 450$ does Connor have left?

Fraction of an Amount

Question 10: The size of a jar of coffee is increased by one-fifth.
The new size is later reduced by one-fifth.
Is the new jar smaller, the same size or larger than the original?
Explain how you worked out your answer.

Question 11: A company earns $£ 3,178,784$ in 2016.
$\frac{4}{7}$ of the income is spent on salaries.
How much money does the company spend on salaries in 2016?

Answers

Click here

Scan here

Examples

Workout

Video 138 on www.corbettmaths.com

Question 1: Find the original number for each question below.
(a) $\frac{1}{2}$ of a number is 7 , what is the number?
(b) $\frac{1}{3}$ of a number is 4 , what is the number?
(c) $\frac{1}{4}$ of a number is 8 , what is the number?
(d) $\frac{1}{5}$ of a number is 9 , what is the number?
(e) $\frac{1}{2}$ of a number is 12.5 , what is the number?
(f) $\frac{1}{3}$ of a number is 27 , what is the number?
(g) $\frac{1}{10}$ of a number is 2.6 , what is the number?
(h) $\frac{1}{12}$ of a number is 8 , what is the number?

Question 2: Find the original number for each question below.
(a) $\frac{2}{3}$ of a number is 12 , what is the number?
(b) $\frac{2}{5}$ of a number is 10 , what is the number?
(c) $\frac{2}{7}$ of a number is 6 , what is the number?
(d) $\frac{3}{10}$ of a number is 60 , what is the number?
(e) $\frac{4}{9}$ of a number is 12 , what is the number?
(f) $\frac{2}{3}$ of a number is 3 , what is the number?
(g) $\frac{3}{4}$ of a number is 27 , what is the number?
(h) $\frac{5}{12}$ of a number is 35 , what is the number?

Question 3: Find the original number for each question below.
(a) A number is increased by $\frac{1}{3}$ to 16 . What was the number?
(b) A number is increased by $\frac{1}{5}$ to 36 . What was the number?
(c) A number is decreased by $\frac{1}{4}$ to 21 . What was the number?
(d) A number is decreased by $\frac{1}{10}$ to 162 . What was the number?
(e) A number is increased by $\frac{2}{5}$ to 49 . What was the number?
(f) A number is increased by $\frac{3}{8}$ to 22 . What was the number?
(g) A number is decreased by $\frac{4}{5}$ to 12 . What was the number?
(h) A number is decreased by $\frac{13}{20}$ to 1400 . What was the number?

Apply

Question 1: Rebecca is $\frac{1}{3}$ of Barry's age.
Barry is $\frac{1}{6}$ of Neville's age.
If Rebecca is 4 years old, how old is Neville?

Question 2: A new snack bar contains 7.5 g of sugar.
$\frac{3}{10}$ of the snack bar is sugar.
Work out the mass of the snack bar.

Question 3: In a class, $\frac{2}{7}$ of the students have blonde hair.
There are 20 students without blonde hair.
How many students are in the class?

Question 4: The height of a tree increased by $\frac{4}{15}$ during 2016.
The tree is 2.47 m by the end of 2016 .
Work out the height of the tree at the beginning of 2016.

Question 5: Laura invested some money.
In the first year, the amount of money increased by $\frac{1}{20}$
In the second year, the amount of money increased by $\frac{1}{5}$
In the third year, the amount of money decreased by $\frac{1}{4}$
Was the investment a success?

Workout

Question 1:
(a) Increase 40 by $\frac{1}{2}$
(b) Increase 18 by $\frac{1}{3}$
(c) Decrease 20 by $\frac{1}{4}$
(d) Increase 30 by $\frac{1}{5}$
(e) Decrease 24 by $\frac{1}{8}$
(f) Decrease 70 by $\frac{1}{10}$
(g) Increase 120 by $\frac{1}{3}$
(h) Decrease 80 by $\frac{1}{5}$
(i) Increase 72 by $\frac{1}{9}$

Question 2:
(a) Increase 12 by $\frac{2}{3}$
(b) Decrease 40 by $\frac{3}{10}$
(c) Increase 30 by $\frac{2}{5}$
(d) Decrease 16 by $\frac{3}{4}$
(e) Increase 90 by $\frac{7}{10}$
(f) Decrease 14 by $\frac{3}{7}$
(g) Increase 48 by $\frac{5}{8}$
(h) Decrease 54 by $\frac{2}{9}$
(i) Increase 84 by $\frac{3}{4}$
(j) Increase 275 by $\frac{2}{5}$
(k) Decrease 240 by $\frac{3}{8}$
(l) Increase 324 by $\frac{7}{9}$

Question 3:
(a) Increase 60 cm by $\frac{3}{10}$
(b) Decrease 120 kg by $\frac{1}{4}$
(c) Increase 400 ml by $\frac{2}{5}$
(d) Increase 14 g by $\frac{1}{5}$
(e) Decrease 50 litres by $\frac{1}{8}$
(f) Increase 130 ml by $\frac{3}{4}$
(g) Increase $£ 76$ by $\frac{2}{5}$
(h) Increase 92 cm by $\frac{3}{20}$
(i) Increase 1.4 kg by $\frac{7}{8}$
Apply

Question 1: Annie is paid $£ 300$ per week.
Annie is paid $£ 300$ per week.
She is going to get a pay rise and her pay will increase by a $\frac{1}{5}$
What will her weekly pay be after the pay rise?

Question 2: Last season, the number of points a rugby team scored was 420.
This season, the number of points they scored increased by $\frac{2}{3}$
How many points did the team score this season?

Question 3: A jam jar usually contains 420 g of jam.
A special edition jar contains $\frac{3}{10}$ more jam.
How much extra jam is in the special edition jar?

Question 4: Find the missing values
(a) 60 reduced by a $\frac{1}{3}$ is the same as 50 reduced by a ?
(b) 72 increased by a $\frac{3}{4}$ is the same as ? reduced by a $\frac{1}{10}$

Question 5: In 1990, the number of birds that live on an island was 1,200. By 2010, the number of birds that live on the island increased by $\frac{9}{4}$ How many birds live on the island in 2010?

Question 6: Tia is training for a marathon using a special training programme.
Each month she runs $\frac{2}{5}$ more miles than she did in the previous month. In January, Tia ran 15 miles.
(a) How many miles did Tia run in February?
(b) How many miles did Tia run in March?

David says that Tia will not follow the special training programme forever.
(c) Explain why David is right.

Adding Fractions: Same Denominators

Video 132 on www.corbettmaths.com
 Video 132 onww.corbetmaths.com

Click here

Question 1: Work out the following additions. You may use the shapes to help.
(a)

(b)

$$
\frac{1}{3}+\frac{1}{3}
$$

(c)

(d)

Question 2: Work out the following additions
(a) $\frac{1}{5}+\frac{1}{5}$
(b) $\frac{3}{11}+\frac{2}{11}$
(c) $\frac{1}{9}+\frac{7}{9}$
(d) $\frac{3}{7}+\frac{3}{7}$
(e) $\frac{6}{11}+\frac{2}{11}$
(f) $\frac{7}{13}+\frac{4}{13}$
(g) $\frac{3}{5}+\frac{1}{5}$
(h) $\frac{10}{21}+\frac{10}{21}$

Question 3: Work out the following subtractions
(a) $\frac{3}{5}-\frac{1}{5}$
(b) $\frac{6}{7}-\frac{2}{7}$
(c) $\frac{4}{5}-\frac{3}{5}$
(d) $\frac{7}{13}-\frac{1}{13}$
(e) $\frac{9}{11}-\frac{6}{11}$
(f) $\frac{16}{21}-\frac{8}{21}$
(g) $\frac{5}{6}-\frac{5}{6}$
(h) $\frac{16}{25}-\frac{9}{25}$

Question 4: Work out the following additions and subtractions Simplify your answers if possible
(a) $\frac{1}{4}+\frac{1}{4}$
(b) $\frac{5}{6}-\frac{1}{6}$
(c) $\frac{3}{8}+\frac{3}{8}$
(d) $\frac{7}{10}-\frac{3}{10}$

Adding Fractions: Same Denominators

Video 132 on www.corbettmaths.com

(e) $\frac{2}{9}+\frac{4}{9}$
(f) $\frac{3}{20}+\frac{7}{20}$
(g) $\frac{1}{12}+\frac{5}{12}$
(h) $\frac{17}{30}-\frac{7}{30}$
(i) $\frac{19}{20}-\frac{7}{20}$
(j) $\frac{11}{18}+\frac{5}{18}$
(k) $\frac{9}{16}-\frac{7}{16}$
(l) $\frac{19}{80}+\frac{31}{80}$

Question 5: Work out the following additions.
(a) $\frac{2}{3}+\frac{2}{3}$
(b) $\frac{4}{5}+\frac{3}{5}$
(c) $\frac{7}{10}+\frac{4}{10}$
(d) $\frac{3}{8}+\frac{5}{8}$
(e) $\frac{9}{11}+\frac{10}{11}$
(f) $\frac{9}{20}+\frac{13}{20}$
(g) $\frac{8}{13}+\frac{6}{13}$
(h) $\frac{41}{50}+\frac{19}{50}$
Apply

Question 1: On Monday, James ate $\frac{1}{8}$ of a cake.
On Tuesday, he ate $\frac{3}{8}$ of the same cake.
In total, how much of the cake has James eaten?

Question 2: At a rugby match, $\frac{3}{5}$ of the crowd are male.
What fraction of the crowd are female?

Question 3: In one season, a netball team won $\frac{4}{7}$ of their matches.
They drew $\frac{2}{7}$ of their matches.
What fraction of the matches did they lose?

Question 4: In a school, pupils study French, German or Spanish.
$\frac{1}{9}$ of the pupils study Spanish.
Half of the remaining pupils study French.

What fraction of the pupils study French?

Adding Fractions: Same Denominators

Question 5: Find the distance from the hotel to the shop.

Question 6: A wooden rod is $\frac{4}{5} m$ long.
Find the total length of 4 wooden rods.

Question 7: Three fractions have been added together and the answer is $\frac{17}{20}$
Write down three fractions that may have been added together.
Question 8: James adds together two fractions.
Both fractions are the same.
The answer is $1 \frac{5}{9}$
Find the two fractions.

Question 9: Will has completed his homework.
Can you spot any mistakes?
Question 1
Work out

Question 2
There are red counters, blue counters and green counters in a bag.
$5 / 8$ of the counters are red.
$1 / 8$ of the counters are blue.
What fraction of the counters are green?

$$
\frac{6}{8}=\frac{3}{4}
$$

Click here

Scan here

Ordering Fractions
 Video 144 on www.corbettmaths.com

Workout

Question 1: Arrange the following sets of fractions in order, from smallest to largest
(a) $\frac{6}{7}, \frac{1}{7}, \frac{2}{7}, \frac{5}{7}$
(b) $\frac{3}{10}, \frac{9}{10}, \frac{1}{10}, \frac{7}{10}$
(c) $\frac{2}{9}, \frac{8}{9}, \frac{5}{9}, \frac{1}{9}$

Question 2: Arrange the following sets of fractions in order, from smallest to largest
(a) $\frac{1}{5}, \frac{3}{10}, \frac{2}{5}, \frac{1}{10}$
(b) $\frac{1}{8}, \frac{1}{4}, \frac{5}{8}, \frac{3}{4}$
(c) $\frac{5}{9}, \frac{2}{3}, \frac{7}{9}, \frac{1}{3}$
(d) $\frac{3}{5}, \frac{13}{20}, \frac{2}{5}, \frac{9}{20}$
(e) $\frac{5}{6}, \frac{7}{12}, \frac{5}{12}, \frac{11}{12}$
(f) $\frac{7}{20}, \frac{23}{60}, \frac{9}{20}, \frac{29}{60}$

Question 3: Arrange the following sets of fractions in order, from smallest to largest
(a) $\frac{2}{3}, \frac{11}{15}, \frac{7}{15}, \frac{3}{5}$
(b) $\frac{13}{20}, \frac{3}{4}, \frac{7}{10}, \frac{11}{20}$
(c) $\frac{1}{2}, \frac{2}{3}, \frac{7}{12}, \frac{5}{6}$
(d) $\frac{13}{16}, \frac{3}{4}, \frac{5}{8}, \frac{11}{16}$
(e) $\frac{3}{50}, \frac{7}{100}, \frac{1}{10}, \frac{9}{200}$
(f) $\frac{13}{20}, \frac{4}{5}, \frac{7}{10}, \frac{23}{40}$

Question 4: Arrange the following sets of fractions in order, from smallest to largest
(a) $\frac{3}{4}, \frac{2}{3}, \frac{5}{6}, \frac{1}{3}$
(b) $\frac{1}{4}, \frac{3}{8}, \frac{1}{6}, \frac{5}{12}$
(c) $\frac{9}{20}, \frac{5}{12}, \frac{3}{10}, \frac{17}{30}$
(d) $\frac{3}{25}, \frac{1}{10}, \frac{1}{8}, \frac{7}{50}$
(e) $\frac{27}{40}, \frac{3}{5}, \frac{5}{8}, \frac{6}{15}$
(f) $\frac{7}{20}, \frac{1}{3}, \frac{3}{8}, \frac{2}{5}$

Apply

Question 1: Write down a fraction between $\frac{2}{3}$ and $\frac{4}{5}$
Question 2: Write down a fraction between $\frac{5}{8}$ and $\frac{2}{3}$

St Andrew's Academy

Mathematics Department

BLOCK FOUR

Number	Algebra	Fractions 2
- Square numbers - Square roots. - Cube numbers. - Cube roots.	- Number patterns. - Linear patterns.	- Converting to mixed numbers. - Converting to improper fractions. - Add/Subtract fractions with different denominators. - Add/Subtract mixed numbers.

Squaring Numbers

Click here

Scan here

Question 1: Write each of the following as multiplications e.g. $5^{2}=5 \times 5$
(a) 3^{2}
(b) 1^{2}
(c) 6^{2}
(d) 9^{2}
(e) 10^{2}
(f) 4^{2}
(g) 12^{2}

Question 2: Write each of the following using the "squared" symbol e.g. $8 \times 8=8^{2}$
(a) 2×2
(b) 5×5
(c) 11×11
(d) 35×35
(e) 20×20
(f) 13×13
(g) 7×7

Question 3: Work out each of the following
(a) 5^{2}
(b) 3^{2}
(c) 8^{2}
(d) 9^{2}
(e) 2^{2}
(f) 10^{2}
(g) 7^{2}
(h) 1^{2}
(i) 4^{2}
(j) 6^{2}
(k) 11^{2}
(l) 20^{2}
(m) 12^{2}
(n) 50^{2}

Question 4: Write down the first 10 square numbers
Question 5: Work out each of the following.
You may not use a calculator
(a) 14^{2}
(b) 18^{2}
(c) 21^{2}
(d) 27^{2}
(e) 35^{2}
(f) 19^{2}
(g) 28^{2}
(h) 43^{2}
(i) 56^{2}
(j) 81^{2}
(k) 92^{2}
(l) 99^{2}
(m) 120^{2}
(n) 163^{2}

Question 6: Work out each of the following. You may use a calculator
(a) 73^{2}
(b) 59^{2}
(c) 208^{2}
(d) 199^{2}
(e) 6.5^{2}
(f) 8.2^{2}
(g) 7.8^{2}
(h) 0.7^{2}
(i) 27.6^{2}
(j) 0.45^{2}
(k) 19.11^{2}
(l) 800^{2}
(m) 1000^{2}
(n) 1111^{2}

Question 1: Write down the square numbers from the list below

$$
\begin{array}{llllllllll}
91 & 101 & 10 & 2 & 4 & 81 & 200 & 16 & 90 & 121
\end{array}
$$

Question 2: 100 can be written as the sum of two different square numbers. Which two square numbers?

Question 3: 85 can be written as the sum of two square numbers in two different ways. Show how this can be done.

Question 4: Tom says "if you square a number the answer is always bigger." Show Tom is incorrect using two different examples.

Question 5: James is adding up consecutive triangular numbers
(a) Write down the first 10 triangular numbers (you may research this)
(b) Add together the first and second triangular numbers.
(c) Add together the second and third triangular numbers.
(d) Add together the third and fourth triangular numbers.
(e) What do you notice about your answers?
(f) Will this always happen? Can you explain why?

Question 6: Rebecca says "when you add three consecutive square numbers, the answer is always odd."
Is Rebecca right? Explain your answer.
Question 7: Duncan has answered the questions below. Can you spot any mistakes?

Write down the value of

(a) 3^{2}

$$
3 \times 2=6
$$

(b) seven squared

$$
7 \times 2=14
$$

\square
14
(c) 8^{2}

$$
8 \times 2=16
$$

Answers

Click here
(1)
(1)

Scan here moths

Examples

Workout

Square Root

Video 228 on www.corbettmaths.com

Click here

Scan here

Question 1: Work out each of the following
(a) $\sqrt{9}$
(b) $\sqrt{ } 25$
(c) $\sqrt{ } 100$
(d) $\sqrt{4}$
(e) $\sqrt{36}$
(f) $\sqrt{64}$
(g) $\sqrt{16}$
(h) $\sqrt{81}$
(i) $\sqrt{ } 144$
(j) $\sqrt{ } 121$
(k) $\sqrt{ } 1$
(l) $\sqrt{0}$

Question 2: Below is a list of numbers.

0	1	4	7	8	9	11	15	20	25	29

From the list write down:
(a) The square root of 81
(b) The square root of 225
(c) The square root of 400
(d) The square root of 1

Question 3: Work out each of the following
You may use a calculator
(a) $\sqrt{324}$
(b) $\sqrt{ } 1444$
(c) $\sqrt{8} 41$
(d) $\sqrt{4225}$
(e) $\sqrt{2} 1316$
(f) $\sqrt{652864}$
(g) $\sqrt{29.16}$
(h) $\sqrt{53.29}$
(i) $\sqrt{ } 0.16$
(j) $\sqrt{2} 16.09$
(k) $\sqrt{ } 123.21$ (l) $\sqrt{ } 13.1044$

Question 4: Between which two consecutive integers do each of the following lie between? e.g. $\sqrt{5} 3$ lies between 7 and 8
(a) $\sqrt{20}$
(b) $\sqrt{97}$
(c) $\sqrt{6}$
(d) $\sqrt{41}$
(e) $\sqrt{ } 130$
(f) $\sqrt{2} 20$

Question 5: Estimate each of the following. Give each estimate to 1 decimal place.
(a) $\sqrt{56}$
(b) $\sqrt{ } 10$
(c) $\sqrt{95}$
(d) $\sqrt{63}$
(e) $\sqrt{ } 150$
(f) $\sqrt{86}$

Question 6: Using your calculator, work out the answers to Question 5.

Question 1: Harriet thinks of a number.
She squares it and then adds 11.
Harriet's answer is 36 .
What was her original number?

Question 2: A square has an area of $225 \mathrm{~cm}^{2}$.
Work out the perimeter of the square.

Question 3: Place each of the digits in the correct position to make the correct calculation.

Question 4: Can you spot any mistakes?

Write down the value of
(a) $\sqrt{ } 16$
(b) $\sqrt{ } 100$

8
(1)

50

Square Root

Video 228 on www.corbettmaths.com

(1)

Question 5: x is a positive integer.
Find the value of x.

$$
\sqrt{3^{2}+4^{2}+12^{2}}=\sqrt{3^{2}+4^{2}}+\sqrt{x^{2}}
$$

Question 6: In 1980 a man's age was the square root of the number of the year of his birth.

Question 1: Write each of the following as multiplications e.g. $4^{3}=4 \times 4 \times 4$
(a) 5^{3}
(b) 2^{3}
(c) 9^{3}
(d) 10^{3}
(e) 7^{3}
(f) 0.2^{3}
(g) 15^{3}

Question 2: Write each of the following using the "cubed" symbol e.g. $8 \times 8 \times 8=8^{3}$
(a) $4 \times 4 \times 4$
(b) $1 \times 1 \times 1$
(c) $6 \times 6 \times 6$
(d) $11 \times 11 \times 11$
(e) $0.5 \times 0.5 \times 0.5$
(f) $27 \times 27 \times 27$
(g) $500 \times 500 \times 500$

Question 3: Work out each of the following You may not use a calculator
(a) 2^{3}
(b) 1^{3}
(c) 5^{3}
(d) 6^{3}
(e) 9^{3}
(f) 10^{3}
(g) 20^{3}
(h) 4^{3}
(i) 8^{3}
(j) 3^{3}
(k) 50^{3}
(l) 15^{3}
(m) 12^{3}
(n) 21^{3}

Question 4: Write down the first 10 cube numbers

Question 5: Work out each of the following.
You may use a calculator
(a) 53^{3}
(b) 39^{3}
(c) 108^{3}
(d) 99^{3}
(e) 3.5^{3}
(f) 7.2^{3}
(g) 6.8^{3}
(h) 0.7^{3}
(i) 12.6^{3}
(j) 0.45^{3}
(k) 8.11^{3}
(l) 600^{3}
(m) 1000^{3}
(n) 1111^{3}

Question 1: James says the sum of the first two cube numbers is a square number.
(a) Is he correct?
(b) What about the first three cube numbers?
(c) What about the first four cube numbers?

Question 2: Tom says "if you cube a number the answer is always bigger." Show Tom is incorrect using two different examples.

Question 3: Work out the following
(a) $(-2)^{3}$
(b) $(-1)^{3}$
(c) $(-10)^{3}$
(d) $(-5)^{3}$

Question 4: Rebecca says "when you add three consecutive cube numbers, the answer is always odd."
Is Rebecca right? Explain your answer.

Question 5: Work out the volume of this cube.

Question 6: Find three numbers that are square numbers and cube numbers
 moths

Examples

Video 214 on www.corbettmaths.com

Workout

Click here

Scan here

Question 1: Work out each of the following
(a) $\sqrt[3]{8}$
(b) $\sqrt[3]{1}$
(c) $\sqrt[3]{0}$
(d) $\sqrt[3]{125}$
(e) $\sqrt[3]{1000}$
(f) $\sqrt[3]{27}$
(g) $\sqrt[3]{512}$
(h) $\sqrt[3]{64}$
(i) $\sqrt[3]{343}$
(j) $\sqrt[3]{729}$
(k) $\sqrt[3]{2} 16$
(l) $\sqrt[3]{8000}$

Question 2: Below is a list of numbers.

0	1	4	7	8	9	11	15	20	27	30

From the list write down:
(a) The cube root of 64
(b) The cube root of 1
(c) The cube root of 27000
(d) The cube root of 512

Question 3: Work out each of the following
You may use a calculator
(a) $\sqrt[3]{1331}$
(b) $\sqrt[3]{13824}$
(c) $\sqrt[3]{1728}$
(d) $\sqrt[3]{3375}$
(e) $\sqrt[3]{2744}$
(f) $\sqrt[3]{125000}$
(g) $\sqrt[3]{0.125}$
(h) $\sqrt[3]{42.875}$
(i) $\sqrt[3]{0.064}$
(j) $\sqrt[3]{1.728}$
(k) $\sqrt[3]{17.576}$
(l) $\sqrt[3]{1.953125}$

Question 4: Between which two consecutive integers do each of the following lie between? e.g. $\sqrt[3]{200}$ lies between 5 and 6
(a) $\sqrt[3]{50}$
(b) $\sqrt[3]{20}$
(c) $\sqrt[3]{400}$
(d) $\sqrt[3]{5}$
(e) $\sqrt[3]{950}$
(f) $\sqrt[3]{777}$

Question 5: Estimate each of the following. Give each estimate to 1 decimal place.
(a) $\sqrt[3]{45}$
(b) $\sqrt[3]{130}$
(c) $\sqrt[3]{500}$
(d) $\sqrt[3]{3}$
(e) $\sqrt[3]{90}$
(f) $\sqrt[3]{140}$

Question 6: Using your calculator, work out the answers to Question 5.

Cube Root

Video 214 on www.corbettmaths.com

Apply

Question 1: James says the cube root of 64 is 8 .
Explain his mistake.

Question 2: Megan says the cube root of 27 is 9 . Explain her mistake.

Question 3: The cube root of 1 is 1 .
Find another number so that when it is cube rooted, it gives the same value.

Question 4: Harry has thought of a number.
He works out the cube root of the number.
Harry says his answer is larger than his starting number.
Archie says he must be wrong.
Show that Harry could be correct.
Question 5: Work out the following cube roots
(a)
(b)

(c)
$\sqrt[3]{-27}$
(d)
$\sqrt[3]{-1000}$

Question 6: Shown is a cube with a volume of $8000 \mathrm{~cm}^{3}$ Find x

$$
\text { Volume }=8000 \mathrm{~cm}^{3}
$$

Click here

Scan here

Examples

Click here

Question 1: Write down the first 10 triangular numbers.

Question 2: From the box, list any triangular number.

Apply

Question 1: Write down two numbers that are triangular numbers and square numbers.

Question 2: Hannah adds together two consecutive triangular numbers. What kind of number does Hannah get?

Question 3: At a party, everybody shakes hands with each other, once. Work out how many handshakes there are in total, if there are
(a) 4 people at the party
(b) 5 people at the party
(c) 8 people at the party

Answers

Click here

Scan here

Sequences: nth term
 Videos 288, 289 on www.corbettmaths.com

Workout

Question 1: Find the $\mathrm{n}^{\text {th }}$ term for each of the following sequences
(a) $5,8,11,14, \ldots \ldots$
(b) $9,14,19,24, \ldots \ldots$
(c) $1,3,5,7, \ldots \ldots$
(d) $10,14,18,22, \ldots \ldots$
(e) $2,7,12,17, \ldots \ldots$
(f) $3,9,15,21, \ldots \ldots$
(g) $11,31,51,71, \ldots \ldots$
(h) $20,23,26,29, \ldots \ldots$
(i) $1,7,13,19, \ldots \ldots$
(j) $100,125,150,175$,
(k) $13,22,31,40, \ldots \ldots$
(l) $1.5,2,2.5,3, \ldots$..

Question 2: Find the $\mathrm{n}^{\text {th }}$ term for each of the following sequences
(a) $10,7,4,1, \ldots \ldots$
(b) $6,4,2,0, \ldots \ldots$
(c) $9,4,-1,-6, \ldots \ldots$
(d) $20,10,0,-10, \ldots \ldots$
(e) $5,-1,-7,-13, \ldots \ldots$
(f) $5,4,3,2, \ldots \ldots$
(g) $-6,-13,-20,-27, \ldots \ldots$
(h) $-10,-13,-16,-19, \ldots \ldots$
(i) $2.5,2,1.5,1, \ldots$.

Question 3: Find the $100^{\text {th }}$ term for each sequence in Questions 1 and 2.

Question 4: The ${ }^{\text {th }}$ term for some sequences are given below.
Find the first 5 terms for each sequence.
(a) $5 n+3$
(b) $2 \mathrm{n}+9$
(c) $3 n-2$
(d) $10 \mathrm{n}-6$
(e) $9 n+10$
(f) $\mathrm{n}+8$
(g) $\quad-7 n+20$
(h) $50-5 \mathrm{n}$
(i) $3.5 n+4$

Question 5:
(a) Is 205 a term in the sequence $1,5,9,13, \ldots \ldots$?
(b) Is 200 a term in the sequence $4,10,16,22, \ldots \ldots$?
(c) Is 1000 a term in the sequence $50,65,80,95, \ldots \ldots$?
(d) Is 999 a term in the sequence $11,20,29,38, \ldots \ldots$?
(e) Is 458 a term in the sequence $5,12,19,26, \ldots \ldots$?

Sequences: nth term

Videos 288, 289 on www.corbettmaths.com

Question 6: Which term in the sequences below is the first to be greater than 250 ?
(a) $9,13,17,21, \ldots \ldots$
(b) $2,10,18,26, \ldots \ldots$
(c) $1,7,13,19, \ldots \ldots$

Question 7: Find the $\mathrm{n}^{\text {th }}$ term for each of the following sequences
(a) $\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \ldots \ldots$
(b) $\frac{9}{11}, \frac{13}{16}, \frac{17}{21}, \frac{21}{26}, \ldots \ldots$
(c) $\frac{3}{7}, \frac{6}{12}, \frac{9}{17}, \frac{12}{22}, \ldots \ldots$
(d) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots \ldots$
(e) $\frac{20}{21}, \frac{25}{32}, \frac{30}{43}, \frac{35}{54}, \ldots \ldots$
(f) $\frac{99}{100}, \frac{97}{95}, \frac{95}{90}, \frac{93}{85}, \ldots \ldots$

Question 8: Find the $20^{\text {th }}$ term for each of the sequences in Question 7.

Apply

Question 1: Calculate the difference between the $10^{\text {th }}$ term and $50^{\text {th }}$ term of the sequence 9, 14, 19, 24,

Question 2: Calculate the sum of the $100^{\text {th }}$ term and $200^{\text {th }}$ term of the sequence 6, 15, 24, 33,

Question 3: Calculate the difference between the $30^{\text {th }}$ term and $60^{\text {th }}$ term of the sequence $8,3,-2,-7, \ldots$...

Sequences: nth term

Videos 288, 289 on www.corbettmaths.com

Question 4: Here are the nth terms of 4 sequences.

Sequence 1	nth term	$4 n+3$
Sequence 2	nth term	$7 n+1$
Sequence 3	nth term	$14 n$
Sequence 4	nth term	$8 n-1$

For each sequence state whether the numbers in the sequence are
A Always multiples of 7
S \quad Sometimes multiples of 7
$\mathrm{N} \quad$ Never multiples of 7

Sequence 1 \qquad Sequence 2 \qquad Sequence 3 \qquad Sequence 4 \qquad

Question 5: Can you spot any mistakes?

A sequence of numbers is shown below.
$+7+7+7$
$815 \quad 22 \quad 29$... ...
(a) Find an expression for the nth term of the sequence.
(b) Explain why 96 will not be a term in this sequence.

\qquad

Question 1: Change these improper fractions into mixed numbers
(a) $\frac{7}{3}$
(b) $\frac{7}{5}$
(c) $\frac{5}{2}$
(d) $\frac{8}{7}$
(e) $\frac{5}{3}$
(f) $\frac{10}{3}$
(g) $\frac{23}{2}$
(h) $\frac{11}{4}$
(i) $\frac{11}{8}$
(j) $\frac{9}{4}$
(k) $\frac{13}{10}$
(l) $\frac{13}{6}$
(m) $\frac{16}{7}$
(n) $\frac{51}{10}$
(o) $\frac{34}{11}$
(p) $\frac{29}{12}$
(q) $\frac{60}{11}$
(r) $\frac{47}{15}$
(s) $\frac{101}{9}$
(t) $\frac{99}{20}$
(u) $\frac{12}{9}$
(v) $\frac{35}{10}$
(w) $\frac{18}{4}$
(x) $\frac{50}{6}$
(y) $\frac{40}{15}$

Question 2: Change these mixed numbers into improper fractions
(a) $2 \frac{1}{5}$
(b) $3 \frac{1}{2}$
(c) $1 \frac{3}{4}$
(d) $3 \frac{2}{3}$
(e) $1 \frac{2}{5}$
(f) $2 \frac{4}{7}$
(g) $1 \frac{1}{3}$
(h) $2 \frac{3}{10}$
(i) $4 \frac{3}{4}$
(j) $1 \frac{7}{12}$
(k) $3 \frac{9}{10}$
(l) $2 \frac{3}{50}$
(m) $3 \frac{5}{8}$
(n) $8 \frac{3}{8}$
(o) $1 \frac{14}{32}$
(p) $2 \frac{19}{24}$
(q) $12 \frac{1}{9}$
(r) $5 \frac{4}{15}$
(s) $4 \frac{11}{12}$
(t) $13 \frac{7}{16}$

Improper Fractions \& Mixed Numbers
 Videos 139 and 140 on www.corbettmaths.com

Apply

Question 1: Match up the improper fractions and mixed numbers.
$2 \frac{1}{4}$
$2 \frac{1}{3}$
$1 \frac{3}{4}$
$3 \frac{2}{3}$

| $\frac{7}{4}$ | $\frac{11}{3}$ |
| :---: | :---: |$\frac{7}{3} \quad \frac{9}{4}$

Question 2: Arrange these improper fractions in order, starting with the smallest.

$$
\frac{23}{4}, \frac{37}{7}, \frac{11}{2}
$$

Question 3: Write down a mixed number between $3 \frac{3}{11}$ and $3 \frac{2}{5}$
Question 4: Gregory feeds his cat $\frac{2}{5}$ of a can of cat food each day.
Work out how many cans of cat food are eaten each fortnight.
Give your answer as a mixed number.

Question 5:

Using the cards, create an improper fraction that is:
(a) between 1 and 2
(b) between 2 and 3
(c) between 4 and 5
(d) between 5 and 10
(e) greater than 10

Adding Fractions: Different Denominators Video 133 on www.corbettmaths.com

Click here

Scan here

Question 1: Work out the following additions and subtractions.
Give your answers as simplified fractions.
(a) $\frac{2}{5}+\frac{1}{2}$
(b) $\frac{2}{7}+\frac{1}{2}$
(c) $\frac{1}{3}+\frac{1}{2}$
(d) $\frac{4}{5}-\frac{2}{3}$
(e) $\frac{8}{9}-\frac{1}{3}$
(f) $\frac{2}{3}+\frac{1}{6}$
(g) $\frac{3}{10}+\frac{2}{5}$
(h) $\frac{3}{8}+\frac{1}{4}$
(i) $\frac{7}{15}-\frac{1}{5}$
(j) $\frac{3}{4}-\frac{2}{5}$
(k) $\frac{3}{10}+\frac{3}{8}$
(l) $\frac{2}{5}+\frac{4}{7}$
(m) $\frac{11}{15}-\frac{1}{6}$
(n) $\frac{5}{11}+\frac{1}{4}$
(o) $\frac{3}{14}+\frac{1}{3}$
(p) $\frac{11}{13}-\frac{1}{2}$
(q) $\frac{7}{20}+\frac{2}{5}$
(r) $\frac{8}{9}-\frac{3}{5}$
(s) $\frac{11}{18}+\frac{1}{6}$
(t) $\frac{39}{100}-\frac{7}{20}$
(u) $\frac{4}{15}+\frac{5}{12}$
(v) $\frac{2}{3}-\frac{9}{16}$
(w) $\frac{19}{30}+\frac{1}{8}$
(x) $\frac{7}{12}+\frac{3}{14}$

Question 2: Work out the following additions.
Give your answers as simplified fractions.
If necessary, give any answers as mixed numbers.
(a) $\frac{3}{4}+\frac{1}{2}$
(b) $\frac{5}{9}+\frac{2}{3}$
(c) $\frac{7}{10}+\frac{1}{3}$
(d) $\frac{4}{5}+\frac{3}{4}$
(e) $\frac{19}{20}+\frac{4}{5}$
(f) $\frac{5}{9}+\frac{13}{18}$
(g) $\frac{5}{12}+\frac{9}{10}$
(h) $\frac{4}{7}+\frac{7}{8}$

Question 3: Work out the following additions and subtractions.
Give your answers as simplified fractions.
If necessary, give any answers as mixed numbers.
(a) $1 \frac{1}{2}+\frac{2}{3}$
(b) $\frac{7}{9}+1 \frac{1}{3}$
(c) $1 \frac{3}{5}-\frac{3}{4}$
(d) $1 \frac{5}{8}-1 \frac{1}{4}$

Adding Fractions: Different Denominators
 Video 133 on www.corbettmaths.com

(e) $2 \frac{1}{2}+1 \frac{1}{3}$
(f) $2 \frac{2}{9}-1 \frac{1}{3}$
(g) $2 \frac{2}{9}+\frac{5}{6}$
(h) $1 \frac{5}{12}+1 \frac{5}{8}$
(i) $3 \frac{1}{10}+2 \frac{2}{3}$
(j) $1 \frac{8}{9}-\frac{4}{7}$
(k) $3 \frac{2}{3}-1 \frac{11}{20}$
(l) $4 \frac{8}{15}+3 \frac{1}{3}$

Apply

Question 1: In a car park, $\frac{2}{3}$ of the cars are red.
$\frac{1}{5}$ of the cars are blue.
What fraction of the cars are red or blue?

Question 2: This week Harry spent $\frac{1}{2}$ of his pocket money on a ticket for a football match. He also spent $\frac{1}{8}$ of his pocket money on a scarf at the match.
(a) What fraction of his pocket money has Harry spent?
(b) What fraction of his pocket money does Harry have left?

Question 3: On an airplane, the passengers may have chicken, vegetable or tomato soup. Half of the passengers choose chicken soup A third of the passengers choose tomato soup.
(a) What fraction of the passengers choose vegetable soup?

There are 240 passengers on the airplane.
(b) How many passengers choose vegetable soup?

Question 4: Patrick has a bag of sugar that contains $\frac{5}{6} \mathrm{~kg}$
He uses $\frac{3}{5} \mathrm{~kg}$ of sugar to make a cake.
How much sugar does Patrick have left?

Question 5: Work out $\frac{1}{6}+\frac{1}{2}+\frac{2}{9}$

Adding Fractions: Different Denominators
 Video 133 on www.corbettmaths.com

Corbett
moths
Question 6: Jasmine has a bottle that contains $\frac{7}{10}$ litre of orange juice.
She pours out some orange juice and now has $\frac{1}{4}$ litre left.
How much orange juice did Jasmine pour out?

Question 7: In school, pupils study one language.
They choose either French, Spanish or Italian.
$\frac{3}{20}$ of the pupils study Italian and $\frac{5}{8}$ of the pupils study French
What fraction of the pupils study Spanish?

Question 8: Shown below is a "magic square"
Each column, row and diagonal has the same total.
Work out the missing fractions.

$\frac{1}{10}$		$\frac{3}{10}$
$\frac{9}{20}$		
$\frac{1}{5}$	$\frac{3}{20}$	

Question 9: Lenny says $\frac{7}{11}+\frac{2}{3}=\frac{9}{14}$
Explain what he has done incorrectly and work out the correct answer.

Question 10: Work out the perimeter of this rectangle.

Question 11: The distance from Newtown to Milton is $7 \frac{2}{3}$ miles.
The distance from Milton to Redville is $2 \frac{2}{5}$ miles
 Work out the distance from Newtown to Redville.

Answers

Scan here

[^0]: * The mass of the balances are very small, so may be ignored

