## New Advanced Higher Mathematics: Formulae

**Green** (G): Formulae you <u>must</u> memorise in order to pass Advanced Higher maths as they are not on the formula sheet.

**Amber** (A): These formulae are given on the formula sheet. But it will still be useful for you to memorise them.

**Red** (R): Don't worry about memorising these, but they might be useful to save time in classwork and homework.

|                            | Essential Formulae to know<br><u>off by heart</u> for the exam (G)                        | Other useful ones that may<br>be useful for<br>homework/classwork etc. |
|----------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Links<br>between<br>ratios | $\cos^{2} A + \sin^{2} A = 1$ $\tan A = \frac{\sin A}{\cos A}$                            | $1 + \tan^2 A = \sec^2 A$ $\cot^2 A + 1 = \csc^2 A$                    |
| Squared                    | $\cos^{2} x = \frac{1}{2}(1 + \cos 2x)$ $\sin^{2} x = \frac{1}{2}(1 - \cos 2x)$           |                                                                        |
| Compound<br>Angle          | $sin(A \pm B) = sin A cos B \pm cos A sin B$ $cos(A \pm B) = cos A cos B \mp sin A sin B$ | $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$        |
| Double<br>Angle            | $\sin(2A) = 2\sin A \cos A$ $\cos(2A) = \cos^2 A - \sin^2 A$                              | $\tan(2A) = \frac{2\tan A}{1 - \tan^2 A}$                              |

#### **Trigonometric Identities:** (from National 5 and Higher)

**Exact Values**(you should know all these, though there is no non-calculator paper, unlike Higher)

|     | 0 | $\frac{\pi}{6}$      | $\frac{\pi}{4}$      | $\frac{\pi}{3}$      | $\frac{\pi}{2}$ | π  | $\frac{3\pi}{2}$ | 2π |                                                                 |
|-----|---|----------------------|----------------------|----------------------|-----------------|----|------------------|----|-----------------------------------------------------------------|
| sin | 0 | $\frac{1}{2}$        | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ | 1               | 0  | -1               | 0  | Negative facts:                                                 |
| cos | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$        | 0               | -1 | 0                | 1  | $\sin(-\theta) = -\sin(\theta)$ $\cos(-\theta) = +\cos(\theta)$ |
| tan | 0 | $\frac{1}{\sqrt{3}}$ | 1                    | $\sqrt{3}$           | undef.          | 0  | undef.           | 0  | $\tan(-\theta) = -\tan(\theta)$                                 |

## **Complex Numbers**

For the complex number, z = a + bi,

- the modulus is given by  $|z| = \sqrt{a^2 + b^2}$
- and the **argument** is given by  $\tan \theta = \frac{b}{a}$

$$-\pi < \theta < \pi$$

• The conjugate is  $\overline{z} = a - bi$ 

#### De Moivre's Theorem says that

for any  $z = r(\cos\theta + i\sin\theta)$ , then  $z^n = r^n(\cos n\theta + i\sin n\theta)$   $(n \in \mathbb{Q})$ 

## **Differentiation**

| <u>Produ</u> | ict Rule:    | $\frac{dv}{dx} + v\frac{du}{dx}$ | Quotient                    | <b><u>Rule:</u></b> $\frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ |
|--------------|--------------|----------------------------------|-----------------------------|-------------------------------------------------------------------|
| f            | ( <i>x</i> ) | f'(x)                            | $f(\mathbf{x})$             | f'(x)                                                             |
| sir          | $n^{-1}x$    | $\frac{1}{\sqrt{1-r^2}}$         | $\frac{f(x)}{\sec x}$       | $\frac{f(x)}{\sec x \tan x}$                                      |
| CO           | $s^{-1}x$    | $-\frac{1}{\sqrt{1-x^2}}$        | $\frac{\csc x}{\cot x}$     | $-\operatorname{cosec} x \cot x \\ -\operatorname{cosec}^2 x$     |
| tar          | $1^{-1}x$    | $\frac{1}{1+x^2}$                | $\ln f(x)$                  | $\frac{f'(x)}{f(x)}$                                              |
| ta           | n x          | $\sec^2 x$                       | To differentiat             | a an invaraa                                                      |
| ln x         | x > 0        | $\frac{1}{x}$                    | function: $\frac{dx}{dy} =$ | $= \frac{1}{\frac{dy}{dx}}$                                       |
| e            | 24           | $e^{\lambda}$                    |                             | ил                                                                |

**<u>Parametric Equations</u>** (where x = f(t), y = g(t)):

• Gradient (direction of movement) =  $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ • Speed =  $\sqrt{\left(\frac{dy}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2}$ •  $\frac{d^2y}{dt} = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{y}}$ 

• 
$$\frac{d^2 y}{dx^2} = \frac{x y - y}{\dot{x}^3}$$

## **Integration**

## **On Formula Sheet**

| f(x)                         | $\int f(x)dx$                                      |
|------------------------------|----------------------------------------------------|
| $\sec^2 ax$                  | $\frac{1}{a}\tan ax + C$                           |
| $\frac{1}{\sqrt{a^2 - x^2}}$ | $\sin^{-1}\left(\frac{x}{a}\right) + C$            |
| $\frac{1}{a^2 + x^2}$        | $\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + C$ |
| $e^{ax}$                     | $\frac{1}{a}e^{ax}+C$                              |

# To save you time in hard questions for homework/classwork, <u>no need to memorise</u>:

| f(x)   | $\int f(x)dx$                                          |
|--------|--------------------------------------------------------|
| tanx   | $\ln  \sec x  + C$                                     |
| cosecx | $-\ln\left \operatorname{cosec} x + \cot x\right  + C$ |
| cot x  | $\ln  \sin x  + C$                                     |
| sec x  | $\ln  \sec x + \tan x  + C$                            |

| <b>Integration</b>        | by | <u>Parts</u>                   |
|---------------------------|----|--------------------------------|
| $\int u \frac{dv}{dx} dx$ | =  | $uv - \int v \frac{du}{dx} dx$ |

Volume of solid of revolution f(x) between a and b: About x axis:  $V = \pi \int_{a}^{b} f(x)^{2} dx$  About y axis:  $V = \pi \int_{a}^{b} f(y)^{2} dy$ 

## **Sequences and Series**

|                             | Arithmetic Series                 | Geometric Series                             |
|-----------------------------|-----------------------------------|----------------------------------------------|
| <i>n</i> <sup>th</sup> term | $u_n = a + (n-1)d$                | $u_n = ar^{n-1}$                             |
| Sum of<br><i>n</i> terms    | $S_n = \frac{1}{2}n(2a + (n-1)d)$ | $S_n = \frac{a(1-r^n)}{1-r} \qquad r \neq 1$ |
| Sum to<br>infinity          |                                   | $S_{\infty} = \frac{a}{1-r} \qquad  r  < 1$  |

#### **Important Identities**

$$\sum_{k=1}^{n} 1 = n$$

$$\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$$

$$\sum_{r=1}^{n} r^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

## **Maclaurin Series**

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

and in particular:



Less essential to memorise:

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

## **Functions**

**Odd function:** f(-x) = -f(x)**Even function:** f(-x) = f(x)(180° rotational symmetry)(line symmetry about the y-axis)

## **Binomial Theorem**

The coefficient of the *r*<sup>th</sup> term in the binomial expansion  $(x+y)^n$  is  $\binom{n}{r}x^{n-r}y^r$ 

$${}^{n}C_{r} = {\binom{n}{r}} = \frac{n!}{r!(n-r)!}$$

## Vectors, Lines and Planes

Angle between two vectors: (Higher)  $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$ 

Equations of a 3d line: through  $(x_1, y_1, z_1)$  and with direction vector  $\mathbf{d} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ 

Parametric formSymmetric form $x = x_1 + at$  $x = x_1 + at$  $y = y_1 + bt$  $(\mathbf{x} = \mathbf{a} + t\mathbf{d})$  $z = z_1 + ct$  $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c} (= t)$ 

#### Equations of a plane:

| Normal <b>n</b> is                                                                         | $\begin{pmatrix} l \\ m \\ n \end{pmatrix}$ | Point on line = P (with position vector $\mathbf{a}$ )                                           |                                                                                                                                    |  |
|--------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| $\frac{\text{Vector equative}}{\mathbf{x} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}}$ | <u>on</u>                                   | $\frac{\text{Symmetric/Cartesian}}{lx + my + nz = k}$<br>where $k = \mathbf{a} \cdot \mathbf{n}$ | Parametric (A)<br>$\mathbf{x} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$<br>(b and c are any two non-<br>parallel vectors in plane) |  |

**Angle between two lines** = Acute angle between their direction vectors

Angle between two planes = Acute angle between their normals

Angle between line and plane =  $90^{\circ}$  – (Acute angle between **n** and **d**)

**Cross (vector) product:** 

 $\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \widehat{\mathbf{n}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \mathbf{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$ 

|                           |                                    | $a_1$ | $a_2$ | $a_3$ |
|---------------------------|------------------------------------|-------|-------|-------|
| Scalar triple product: a• | $(\mathbf{b} \times \mathbf{c}) =$ | $b_1$ | $b_2$ | $b_3$ |
|                           |                                    | $c_1$ | $c_2$ | $c_3$ |

## **Matrices**

|              |                                                                         | Determinant and Inverse                                                                                                                                     |
|--------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2×2 matrices | $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$                      | det $A = ad - bc$ and $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$                                                           |
| 3×3 matrices | $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ | $\det A = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$ |

$$(AB)^{-1} = B^{-1}A^{-1} \qquad (AB)^{T} = B^{T}A^{T} \qquad \det AB = \det A \det B \text{ (A)}$$

| Transformation Matrices                                             |                                                           |                                 |                                                                              |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|--|--|--|
| Anti-CW Rotation by $\theta$ degrees                                | $ \begin{pmatrix} \cos\theta\\ \sin\theta \end{bmatrix} $ | $-\sin\theta$<br>$\cos\theta$ , | Reflection in y-axis $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$         |  |  |  |
| Dilatation by scale factor $a \begin{pmatrix} a \\ 0 \end{pmatrix}$ | $\begin{pmatrix} 0\\ a \end{pmatrix}$ ,                   |                                 | Reflection in <i>x</i> -axis $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ |  |  |  |

## **Differential Equations**

For 
$$\frac{dy}{dx} + P(x)y = Q(x)$$
, the Integrating Factor  $I(x)$  is  $e^{\int P(x)dx}$   
and the solution is given by  $I(x)y = \int I(x)Q(x)dx$ 

#### **Second Order Differential Equations**

## **COMPLEMENTARY FUNCTION (Homogeneous Equations)**

| Nature of roots                         | Form of general solution                          |
|-----------------------------------------|---------------------------------------------------|
| Two distinct real <i>m</i> and <i>n</i> | $y = Ae^{mx} + Be^{nx}$                           |
| Real and equal <i>m</i>                 | $y = (A + Bx)e^{mx}$                              |
| Complex conjugate $m = p \pm iq$        | $y = e^{px} \left( A \cos qx + B \sin qx \right)$ |

#### PARTICULAR INTEGRAL (Inhomogeneous Equations)

| Right-hand side contains                 | For Particular Integral, try |
|------------------------------------------|------------------------------|
| $\sin ax$ or $\cos ax$                   | $y = P\cos ax + Q\sin ax$    |
| $e^{ax}$                                 | $y = Pe^{ax}$                |
| Linear expression $y = ax + b$           | y = Px + Q                   |
| Quadratic expression $y = ax^2 + bx + c$ | $y = Px^2 + Qx + R$          |