New Advanced Higher Mathematics: Formulae

Green (G): Formulae you must memorise in order to pass Advanced Higher maths as they are not on the formula sheet.
Amber (A): These formulae are given on the formula sheet. But it will still be useful for you to memorise them.
Red (R): Don't worry about memorising these, but they might be useful to save time in classwork and homework.

Trigonometric Identities: (from National 5 and Higher)

	Essential Formulae to know off by heart for the exam (G)	Other useful ones that may be useful for homework/classwork etc.
Links between ratios	$\cos ^{2} A+\sin ^{2} A=1$	$1+\tan ^{2} A=\sec ^{2} A$ $\cot ^{2} A+1=\operatorname{cosec}^{2} A$
Squared	$\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$ $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$	
Compound Angle	$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$ $\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$	$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
Double Angle	$\sin (2 A)=2 \sin A \cos A$ $\cos (2 A)=\cos ^{2} A-\sin ^{2} A$	$\tan (2 A)=\frac{2 \tan A}{1-\tan A}$

Exact Values(you should know all these, though there is no non-calculator paper, unlike Higher)

\sin	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
\cos	1	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
\tan	0	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1	$\sin (-\theta)=-\sin (\theta)$ $\cos (-\theta)=+\cos (\theta)$ $\tan (-\theta)=-\tan (\theta)$

Complex Numbers

For the complex number, $z=a+b i$,

- the modulus is given by $|z|=\sqrt{a^{2}+b^{2}}$
- and the argument is given by $\tan \theta=\frac{b}{a} \quad-\pi<\theta<\pi$
- The conjugate is $\bar{z}=a-b i$

De Moivre's Theorem says that

$$
\text { for any } z=r(\cos \theta+i \sin \theta) \text {, then } z^{n}=r^{n}(\cos n \theta+i \sin n \theta) \quad(n \in \mathbb{Q})
$$

Differentiation

Product Rule: $u \frac{d v}{d x}+v \frac{d u}{d x}$
Quotient Rule: $\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$

$f(x)$	$f^{\prime}(x)$		
$\sin ^{-1} x$	1	$f(x)$	$f^{\prime}(x)$
$\sin x$	$\overline{\sqrt{1-x^{2}}}$	$\sec x$	$\sec x \tan x$
	1	$\operatorname{cosec} x$	$-\operatorname{cosec} x \cot x$
$\cos ^{-1} x$	$\sqrt{1-x^{2}}$	$\cot x$	$-\operatorname{cosec}^{2} x$
	1	$\ln f(x)$	$f^{\prime}(x)$
$\tan ^{-1} x$	$\frac{1}{1+x^{2}}$	$\ln f(x)$	$f(x)$
$\tan x$	$\sec ^{2} x$		
	1	To differentiate an inverse function: $\frac{d x}{d y}=\frac{1}{\frac{d y}{d x}}$	
$\ln x \times>0$	$\frac{1}{x}$		
e^{x}	e^{x}		

Parametric Equations (where $x=f(t), y=g(t)$):

- Gradient (direction of movement) $=\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$
- \quad Speed $=\sqrt{\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d x}{d t}\right)^{2}}$
- $\frac{d^{2} y}{d x^{2}}=\frac{\dot{x} \ddot{y}-\dot{y} \ddot{x}}{\dot{x}^{3}}$

Integration

On Formula Sheet

$f(x)$	$\int f(x) d x$
$\sec ^{2} a x$	$\frac{1}{a} \tan a x+C$
$\frac{1}{\sqrt{a^{2}-x^{2}}}$	$\sin ^{-1}\left(\frac{x}{a}\right)+C$
$\frac{1}{a^{2}+x^{2}}$	$\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C$
$e^{a x}$	$\frac{1}{a} e^{a x}+C$

To save you time in hard questions for
homework/classwork, no need to memorise:

$f(x)$	$\int f(x) d x$
$\tan \mathrm{x}$	$\ln \|\sec x\|+C$
$\operatorname{cosec} x$	$-\ln \|\operatorname{cosec} x+\cot x\|+C$
$\cot x$	$\ln \|\sin x\|+C$
$\sec x$	$\ln \|\sec x+\tan x\|+C$

Integration by Parts

$$
\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x
$$

Volume of solid of revolution $f(x)$ between a and b :
About x axis: $V=\pi \int_{a}^{b} f(x)^{2} d x \quad$ About y axis: $V=\pi \int_{a}^{b} f(y)^{2} d y$

Sequences and Series

	Arithmetic Series	Geometric Series
$\boldsymbol{n}^{\text {th }}$ term	$u_{n}=a+(n-1) d$	$u_{n}=a r^{n-1}$
Sum of \boldsymbol{n} terms	$S_{n}=\frac{1}{2} n(2 a+(n-1) d)$	$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad r \neq 1$
Sum to infinity		$S_{\infty}=\frac{a}{1-r} \quad\|r\|<1$

Important Identities

$$
\begin{gathered}
\sum_{k=1}^{n} 1=n \\
\sum_{r=1}^{n} r=\frac{n(n+1)}{2} \\
\sum_{r=1}^{n} r^{3}=\frac{n^{2}(n+1)^{2}}{4}
\end{gathered}
$$

Maclaurin Series

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots+\frac{f^{(n)}(0)}{n!} x^{n}+\ldots
$$

and in particular:

Very useful to memorise:

$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}+\ldots$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$

Less essential to memorise:

$$
\begin{aligned}
& \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots \\
& \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots
\end{aligned}
$$

Functions

$$
\text { Odd function: } f(-x)=-f(x) \quad \text { Even function: } f(-x)=f(x)
$$

(180° rotational symmetry)

Binomial Theorem

The coefficient of the $r^{\text {th }}$ term in the binomial expansion $(x+y)^{n}$ is $\binom{n}{r} x^{n-r} y^{r}$ ${ }^{n} C_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}$

Vectors, Lines and Planes

Angle between two vectors: (Higher) $\mathbf{a} \bullet \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$

Equations of a 3d line: through $\left(x_{1}, y_{1}, z_{1}\right)$ and with direction vector $\mathbf{d}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$

Parametric form
$x=x_{1}+a t$
$y=y_{1}+b t \quad(\mathbf{x}=\mathbf{a}+t \mathbf{d})$
$z=z_{1}+c t$

Symmetric form
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}(=t)$

Equations of a plane:

$$
\begin{aligned}
& \text { Normal } \mathbf{n} \text { is }\left(\begin{array}{c}
l \\
m \\
n
\end{array}\right) \\
& \begin{array}{l}
\text { Point on line }=\mathrm{P}(\text { with position vector } \mathbf{a}) \\
\mathbf{V} \cdot \mathbf{n}=\mathbf{a} \cdot \mathbf{n}
\end{array} \\
& \begin{array}{l}
\frac{\text { Symmetric/Cartesian }}{l x+m y+n z=k} \\
\text { where } k=\mathbf{a} \cdot \mathbf{n}
\end{array}
\end{aligned} \begin{aligned}
& \frac{\text { Parametric (A) }}{\mathbf{x}=\mathbf{a}+s \mathbf{b}+t \mathbf{c}} \begin{array}{l}
(\mathbf{b} \text { and } \mathbf{c} \text { are any two non- } \\
\text { parallel vectors in plane) }
\end{array}
\end{aligned}
$$

Angle between two lines = Acute angle between their direction vectors
Angle between two planes $=$ Acute angle between their normals
Angle between line and plane $=90^{\circ}-($ Acute angle between \mathbf{n} and $\mathbf{d})$

Cross (vector) product:

$$
\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin \theta \widehat{\mathbf{n}}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\mathbf{i}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\mathbf{k}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|
$$

Scalar triple product: $\quad \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$

Matrices

		Determinant and Inverse
$\mathbf{2 \times 2}$ matrices	$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$	$\operatorname{det} A=a d-b c$ and $A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
$\mathbf{3} \times \mathbf{3}$ matrices	$A=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$	$\operatorname{det} A=a\left\|\begin{array}{cc}e & f \\ h & i\end{array}\right\|-b\left\|\begin{array}{ll}d & f \\ g & i\end{array}\right\|+c\left\|\begin{array}{ll}d & e \\ g & h\end{array}\right\|$

$(A B)^{-1}=B^{-1} A^{-1}$
$(A B)^{T}=B^{T} A^{T}$
$\operatorname{det} A B=\operatorname{det} A \operatorname{det} B(\mathrm{~A})$

Transformation Matrices

Anti-CW Rotation by θ degrees $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$, Reflection in y-axis $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ Dilatation by scale factor $a\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right), \quad \quad$ Reflection in x-axis $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Differential Equations

$$
\begin{aligned}
& \text { For } \frac{d y}{d x}+P(x) y=Q(x) \text {, the Integrating Factor } I(x) \text { is } e^{\int P(x) d x} \\
& \text { and the solution is given by } I(x) y=\int I(x) Q(x) d x
\end{aligned}
$$

Second Order Differential Equations

COMPLEMENTARY FUNCTION (Homogeneous Equations)

Nature of roots	Form of general solution
Two distinct real m and n	$y=A e^{m x}+B e^{n x}$
Real and equal m	$y=(A+B x) e^{m x}$
Complex conjugate $m=p \pm i q$	$y=e^{p x}(A \cos q x+B \sin q x)$

PARTICULAR INTEGRAL (Inhomogeneous Equations)

Right-hand side contains...	For Particular Integral, try...
$\sin a x$ or $\cos a x$	$y=P \cos a x+Q \sin a x$
$e^{a x}$	$y=P e^{a x}$
Linear expression $y=a x+b$	$y=P x+Q$
Quadratic expression $y=a x^{2}+b x+c$	$y=P x^{2}+Q x+R$

