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N7 Properties of Functions AAC 1.4 
 

 

We wish to sketch the graphs of rational functions. A rational function is of 

the form 
𝑃(𝑥)

𝑄(𝑥)
. We wish to find stationary points and their nature and where 

the graph crosses the x and y axes.  

 

 

Asymptotes 
 

An asymptote is a straight line to which the curve approaches more and 

more closely as x becomes very large or very negative, or approaches a 

certain value. Asymptotes can be vertical, horizontal or slant. 

 

Vertical Asymptotes 

These are of the form x=k. They are found from the zeros of the 

denominator. We must find the asymptotes and how the graph 

approaches them from the left and the right. 

 

Example: Find the vertical asymptotes of 𝑓(𝑥) =
2𝑥+3

𝑥2+5𝑥+4
. 

Vertical asymptotes occur when 𝑥2 + 5𝑥 + 4 = 0 

      (𝑥 + 4)(𝑥 + 1) = 0 

      𝑥 = −4 and 𝑥 = −1 are asymptotes. 

𝑓(𝑥) =
2𝑥 + 3

(𝑥 + 4)(𝑥 + 1)
 

For 𝑥 = −4    

First choose a number the left of -4  

𝑥 = −4.1  𝑓(−4.1) =
−

(−)(−)
= −   

So as 𝑥 → −4−, 𝑦 → −∞. 

“As x tends to -4 from the left, y tends to negative infinity.” 

Now choose a number to the right of -4, say -3.9. 

𝑥 = −3.9  𝑓(−3.9) =
−

(+)(−)
= +    

x=-4 
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So as 𝑥 → −4+, 𝑦 → +∞. 

“As x tends to -4 from the right, y tends to positive infinity.” 

For x=-1 

𝑥 = −1.1  𝑓(−1.1) =
+

(+)(−)
= −   So as 𝑥 → −1−, 𝑦 → −∞. 

𝑥 = −0.9  𝑓(−0.9) =
+

(+)(+)
= +   So as 𝑥 → −1+, 𝑦 → +∞. 

 

 

Exercise 1: Find all the vertical asymptotes and their approaches of the 

following rational functions. 

a) 𝑓(𝑥) =
4

𝑥−2
    b) 𝑓(𝑥) =

3𝑥−1

𝑥2+2𝑥−3
  c) 𝑓(𝑥) =

12

𝑥2−2𝑥−3
 

 

d) 𝑓(𝑥) =
𝑥+4

𝑥−2
      e) 𝑓(𝑥) =

𝑥2

4−𝑥2  f) 𝑓(𝑥) =
𝑥(𝑥−1)

(𝑥−1)(𝑥+2)
 

 

g) 𝑓(𝑥) =
(𝑥−1)(𝑥−4)

𝑥
   h) 𝑓(𝑥) =

𝑥2+3

𝑥−1
    i) 𝑓(𝑥) =

𝑥2

𝑥2+3
 

 

j)   𝑓(𝑥) =
𝑥

𝑥2+4
  k) 𝑓(𝑥) =

𝑥2

𝑥−1
  l) 𝑓(𝑥) =

2𝑥2

𝑥2−1
 

 

 

Non-Vertical Asymptotes 

Non-vertical asymptotes are horizontal or slant with equations of the form 

𝑦 = 𝑐 or 𝑦 = 𝑚𝑥 + 𝑐. The x-axis can be an asymptote with equation 𝑦 = 0. 

We will see that: 

 If the degree of the numerator < the degree of the denominator then 

the x-axis is the asymptote. 

 If the degree of the numerator = the degree of the denominator then, 

after dividing the numerator by the denominator, we will find that the 

asymptote is of the form 𝑦 = 𝑐. 

 If the degree of the numerator is one degree more than the degree 

of the denominator then, after dividing the numerator by the 

denominator, we will find that the asymptote is of the form 

     𝑦 = 𝑚𝑥 + 𝑐. 

x=-1 
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If the degree of the numerator is two or more degrees greater than the 

denominator then there are no linear non-vertical asymptotes. The curve 

may approach 𝑦 = 𝑎𝑥2 or 𝑦 = 𝑎𝑥3 etc but that is not of interest here. 

 

Consider 𝑓(𝑥) =
3𝑥+5

𝑥2−4𝑥+1
. What happens to 𝑓(𝑥) as 𝑥 → ±∞? 

Dividing numerator and denominator by the highest power, 𝑥2, we get 

  𝑓(𝑥) =
3

𝑥
+

5

𝑥2

1−
4

𝑥
+

1

𝑥2

 

as 𝑥 → ±∞, 
3

𝑥
, 

5

𝑥2, 
4

𝑥
 and 

1

𝑥2 all tend to zero. So  𝑓(𝑥) →
0

1
= 0. 

The non-vertical asymptote is 𝑦 = 0. 

 

When the numerator is of a lower degree than the denominator: if x 

becomes very large or very negative, 𝑓(𝑥) tends to zero. 

 

Now consider the sign that 𝑓(𝑥) =
3𝑥+5

𝑥2−4𝑥+1
 takes when x is very large or 

very negative. 

For very large x the value of the polynomial is mostly determined by the 

highest power. 

 

e.g. 𝑔(𝑥) = 3𝑥 + 5. If x=1,000,000 adding 5 to 3,000,000 makes little 

difference to the value of 𝑔(𝑥). 

e.g.ℎ(𝑥) = 𝑥2 − 4𝑥 + 1. If x=1,000,000 subtracting 4 million from 1 million 

squared will make little difference to the value of ℎ(𝑥). 

 

As 𝑥 → +∞, 𝑓(𝑥) →
+

+
→ +. 

“As x gets larger, the curve approaches the asymptote from above.” 

As 𝑥 → −∞, 𝑓(𝑥) →
−

+
→ −. 

“As x gets more negative, the curve approaches the asymptote from 

below.” 

 

 

 

y=0 
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Examples: Find the non-vertical asymptotes and the approaches. 

a) 𝑓(𝑥) =
2𝑥+3

𝑥2+5𝑥+4
  (degree of the numerator<degree of the denominator)  

 𝑓(𝑥) → 0 as 𝑥 → ±∞, so the x-axis is an asymptote. 

As 𝑥 → +∞, 𝑓(𝑥) →
+

+
→ + 

As 𝑥 → −∞, 𝑓(𝑥) →
−

+
→ − 

b) 𝑓(𝑥) =
𝑥2+2𝑥+1

𝑥2+5𝑥+4
  (degree of the numerator=degree of the denominator)   

 First divide the numerator by the denominator, this gives 

 𝑓(𝑥) = 1 − 
3𝑥+3

𝑥2+5𝑥+4
 

The fraction part will tend to zero for large values of x (as above) 

and f(x) will get closer to the value of 1. 

As 𝑥 → +∞, 𝑓(𝑥) → 1 −
+

+
→ 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 1 

As 𝑥 → −∞, 𝑓(𝑥) → 1 −
−

+
→ 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 1 

c) 𝑓(𝑥) =
𝑥2+4𝑥+3

𝑥+2
 (degree of the numerator>degree of the denominator)   

 First divide the numerator by the denominator, this gives 

 𝑓(𝑥) = 𝑥 + 2 −  
1

𝑥+2
 

The fraction part will tend to zero as x becomes very large so the 

asymptote is  𝑦 = 𝑥 + 2. 

As 𝑥 → +∞, 𝑓(𝑥) → 𝑥 + 2 −
1

+
→ 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑥 + 2 

As 𝑥 → −∞, 𝑓(𝑥) → 𝑥 + 2 −
1

−
→ 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝑥 + 2 

 

Exercise 2: Find all the non-vertical asymptotes and their approaches of 

the following rational functions. 

a) 𝑓(𝑥) =
4

𝑥−2
    b) 𝑓(𝑥) =

3𝑥−1

𝑥2+2𝑥−3
  c) 𝑓(𝑥) =

12

𝑥2−2𝑥−3
 

 

d) 𝑓(𝑥) =
𝑥+4

𝑥−2
      e) 𝑓(𝑥) =

𝑥2

4−𝑥2  f) 𝑓(𝑥) =
𝑥(𝑥−1)

(𝑥−1)(𝑥+2)
 

 

g) 𝑓(𝑥) =
(𝑥−1)(𝑥−4)

𝑥−2
   h) 𝑓(𝑥) =

𝑥2+3

𝑥−1
    i) 𝑓(𝑥) =

𝑥2

𝑥2+3
 

 

j)   𝑓(𝑥) =
𝑥

𝑥2+4
  k) 𝑓(𝑥) =

𝑥2

𝑥−1
  l) 𝑓(𝑥) =

2𝑥2

𝑥2−1
 

 

y=0 

y=1 

 

y=x+2 
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Curve Sketching 
 

Steps in curve sketching for rational functions: 

1. Find all the asymptotes and investigate the approaches 

2. Find all the stationary points and their nature 

3. Find where the graph crosses the y-axis and x-axis 

 

Remember that you now have many methods of differentiation and for 

finding the nature stationary points. The methods used here are just one 

of the options. 

 

Examples: Sketch the graph of 

a) 𝑓(𝑥) =
2𝑥2+𝑥−1

𝑥−1
=  

(𝑥+1)(2𝑥−1)

𝑥−1
  

 Asymptotes 

 Vertical:  𝑥 − 1 = 0 ⟹   𝑥 = 1 is an asymptote 

   As 𝑥 → 1−, 𝑦 →
(+)(+)

−
→ −∞ 

   As 𝑥 → 1+, 𝑦 →
(+)(+)

+
→ +∞ 

 Non-Vertical: By division, 𝑓(𝑥) = 2𝑥 + 3 +
2

𝑥+1
 

    So 𝑦 = 2𝑥 + 3  is an asymptote.   

    As 𝑥 → +∞, 𝑓(𝑥) → 2𝑥 + 3 +
2

+
→ 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 2𝑥 + 3 

    As 𝑥 → +∞, 𝑓(𝑥) → 2𝑥 + 3 +
2

−
→ 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 2𝑥 + 3 

 Stationary Points   

 𝑓(𝑥) = 2𝑥 + 3 + 2(𝑥 + 1)−1 

 𝑓′(𝑥) = 2 − 2(𝑥 − 1)−2 

 Set f’(x)=0 for stationary points 

 2 −
2

(𝑥−1)2 = 0 

              2 =
2

(𝑥−1)2 

   (𝑥 − 1)2 = 1 

 𝑥 = 2  𝑜𝑟  𝑥 = 0 

 𝑦 = 9         𝑦 = 1 

 𝑓′′(𝑥) = 4(𝑥 − 1)−3 

x=1 

y=2x+3 
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 𝑓′′(0) = −  ⟹ (0,1) is a max t.p. 

 𝑓′′(2) = +  ⟹ (2,9) is a min t.p. 

 Axes Crossings 

 x-axis: 𝑦 = 0 𝑖. 𝑒.  
(𝑥+1)(2𝑥−1)

𝑥−1
= 0  

   (𝑥 + 1)(2𝑥 − 1) = 0 

   𝑥 = −1  𝑜𝑟  𝑥 =
1

2
 

   (−1,0)           (
1

2
, 0) 

 y-axis: 𝑥 = 0  ⇒   𝑦 = 1 

   (0,1) 

 

 

b) 𝑓(𝑥) =
2𝑥2+4𝑥+3

𝑥2−1
=

2𝑥2+4𝑥+3

(𝑥+1)(𝑥−1)
 

 Asymptotes 

 Vertical: (𝑥 + 1)(𝑥 − 1) = 0 

   𝑥 = −1 and 𝑥 = 1 are asymptotes 

   As 𝑥 → −1−, 𝑦 ⟶
+

(−)(−)
⟶ +∞ 

   As 𝑥 → −1+, 𝑦 ⟶
+

(−)(−)
⟶ +∞ 

   As 𝑥 → 1−, 𝑦 ⟶
+

(+)(−)
⟶ −∞ 

   As 𝑥 → 1+, 𝑦 ⟶
+

(+)(+)
⟶ +∞ 

 Non-Vertical: 𝑓(𝑥) = 2 +
4𝑥+5

𝑥2−1
, so 𝑦 = 2 is an asymptote 

    As 𝑥 → +∞, 𝑦 → 2 +
+

+
→ 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 2 

    As 𝑥 → −∞, 𝑦 → 2 +
−

+
→ 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 2 

 Stationary Points 

 𝑓(𝑥) = 2 +
4𝑥+5

𝑥2−1
 

 𝑓′(𝑥) =
4(𝑥2−1)−(4𝑥+5)2𝑥

(𝑥2−1)2  

   =
−2(𝑥+2)(2𝑥+1)

(𝑥2−1)2  

 Set f’(x)=0 for stationary points 

 −2(𝑥 + 2)(2𝑥 + 1) = 0 

x=1 

(-1,0) 

y=2x+3 
(2,9) 

(0,1) 

(½,0) 

x=-1 

x=1 

y=2 
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 𝑥 = −2  𝑜𝑟  𝑥 = −
1

2
 

 𝑦 = 1            𝑦 = −2 

x →-2→  x →-½→ 

-2 -   -   - -2 -   -   - 

x+2 -   0  + x+2 +  +  + 

2x+1 -   -   -   2x+1 -   0  +   

(x2-1)2 +  +  + (x2-1)2 +  +  + 

f’(x) -   0  + f’(x) +  0  - 

tangent  tangent  

 Min t.p. at (-2,1)     Max t.p. at (-½,-2) 

 Axes Crossings 

 x-axis: 𝑦 = 0 𝑖. 𝑒.  
2𝑥2+4𝑥+3

(𝑥+1)(𝑥−1)
= 0  

2𝑥2 + 4𝑥 + 3 = 0, however b2-4ac<0 so there are no real 

roots and f(x) does not cross the x-axis. 

 y-axis: 𝑥 = 0  ⇒   𝑦 = −3 

   (0, −3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y=2 

x=-1 x=1 

(-2,1) 

(-½,-2) 

(0,-3) 
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Exercise 3: Sketch the following curves 

a) 𝑓(𝑥) =
4

𝑥−2
    b)  𝑓(𝑥) =

𝑥−2

𝑥−1
   c)  𝑓(𝑥) =

𝑥2+𝑥−2

𝑥2+𝑥−6
  

 

d)  𝑓(𝑥) =
𝑥2+2𝑥+5

𝑥+1
    e)  𝑓(𝑥) =

𝑥+1

𝑥2+2𝑥+5
    f)  𝑓(𝑥) =

2𝑥2

𝑥2−1
  

 

g)  𝑓(𝑥) =
𝑥2−10𝑥+9

𝑥2+10𝑥+9
    h)  𝑓(𝑥) =

2𝑥2−3𝑥−3

𝑥2−3𝑥+2
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Concavity 
 

The graph of y=f(x) is concave downward in an interval when f’’(x)<0. 

Concave downward can be pictured as a  ∩ shaped graph. 

 

The graph of y=f(x) is concave upward in an interval when f’’(x)>0. 

Concave upward can be pictured as a ∪ shaped graph. 

 

A curve has a point of inflexion if the concavity changes at the point i.e. 

(a,b) is a point of inflexion if f’’(x) changes sign at x=a. 

 

Examples: 

1 Determine the concavity of the function f(x)=x3-3x+4. 

 f’(x)=3x2-3 

 f’’(x)=6x 

 There will be a possible point of inflexion when f’’(x)=0 

 6x=0 

   x=0 

 Is there a change in the sign of f’’(x) at x=0? 

x → 0 → 

f’’(x) -   0   + 

 So (0,4) is a point of inflexion and the curve is concave downward to 

the left of zero and concave upward to the right of zero. Note that 

(0,4) is not a horizontal point of inflexion as f’(x)≠0 at x=0. 

 

2 Find the points of inflexion on the curve y=(x-1)4-32x 

 f’(x)=4(x-1)3-32 

 f’’(x)=12(x-1)2 

 Possible points of inflexion when 12(x-1)2=0 

               x=1 

 But 12(x-1)2 is always greater than or equal to zero so there is no 

point of inflexion at x=1 and the curve is concave up. 

 

 

 



11 
 

Exercise 4: 

1. Use the second derivative to show that the graph of f(x)=lnx is 

always concave down. 

 

2. Find the points of inflexion on the curve y=2x3-3x2. 

 

3. Describe the concavity of the function f(x)=(x+2)3+4 and identify the 

point of inflexion. 

 

4. Describe the concavity of the function 𝑓(𝑥) = 𝑥2 +
16

𝑥
 and identify the 

point of inflexion.  

 

 

New Terms 

A critical point is any point on a curve where the gradient of the tangent is 

zero or where f’(x) is undefined. 

 

A local maximum point occurs when a function has a greater value at that 

point than at any points close to it. It may not be the greatest value of the 

function. There can be more than one local maximum turning point. 

 

A local minimum point is defined in a similar way. 

 

A global maximum point occurs when f(x) has its greatest value over the 

whole domain, at a point i.e. a function has a global maximum at a is 

f(a)≥f(x) for all x in the domain of f.  

 

A global minimum point is defined in a similar way. 

 

Continuous Function 

A function is said to be continuous if there is no break in the graph of the 

function. If a graph can be drawn without lifting the pencil from the paper, 

the function is continuous. 
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The Graph of Inverse Functions 
 

The graph of the inverse of simple functions has already been met at 

Higher level  

 

Examples: 

a) f(x)=2x-3 has an inverse of f-1(x)=
1

2
(x+3)= 

1

2
x+

3

2
 

The graphs are as follows 

 

 

 

 

 

 

It has already been shown that the graph of an inverse function can be 

found by reflecting the graph of the function in the line y=x. 

 

b) f(x)=ex has an inverse of f-1(x)=lnx 

 The graphs are as follows 

 

 

 

 

c) f(x)=sinx has an inverse of f-1(x)=sin-1x 

 The graphs are as follows 

 

 

 

 

 

y=2x-3 

y=
1

2
x+

3

2
 

y=x 

y=sinx 
y=sin-1x 

y=sinx 

y=sin-1x 

y=x 

y=ex 

y=ln x 
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The inverse sine function is denoted by sin-1x and read as sin 

inverse of x or arc sine x. 

The inverse sine function is defined as the angle whose sine is x. 

If we consider the graph of y=sinx, we see that there is an infinite 

number of angles whose sine could be x. 

Consequently, in order that the inverse sine should be a function, we 

must restrict the angle concerned. 

We chose the simplest possible restriction for the angle – the closed 

interval [−
𝜋

2
,

𝜋

2
]. A revised definition is therefore that the inverse sine 

function, sin-1x, is the angle in the closed interval [−
𝜋

2
,

𝜋

2
], whose 

        sine is x.    

 

 

d) f(x)=cosx has an inverse of f-1(x)=cos-1x 

 The graphs are as follows 

 

 

 

 

 

 

The inverse cosine function is denoted by cos-1x and is read as cos 

inverse or arc cos x. 

In this case we restrict the angle to the closed interval [0, 𝜋]. 

The inverse cosine function is defined as the angle, in the closed 

interval [0, 𝜋], whose cosine is x.   

 

 

  

y=cosx 

y=cos-1x 

y=cosx 

y=cos-1x 
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e) f(x)=tanx has an inverse of f-1(x)=tan-1x 

 The graphs are as follows 

 

 

 

 

 

 

 

  

The inverse tangent function is denoted by tan-1x and is read as tan 

inverse x or arc tan x. In this case we restrict the angle to the open 

interval (−
𝜋

2
,

𝜋

2
). 

The inverse tangent function is defined as the angle in the open 

interval (−
𝜋

2
,

𝜋

2
) whose tangent is x. 

 

 

 

More Related Graphs from Higher 
 

a) The graph of kf(x) 

  

 

 

 

 

The graph of f(x) is stretched vertically if k>1 and compressed 

vertically if 0<k<1. 

 

y=tan-1x 

y=tanx 

y=x2 

y=4x2 

y=sinx 

y=3sinx 
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b) The graph of f(x)+k 

 

 

 

 

The graph of f(x) is moved vertically upwards if k>0 and downwards 

if k<0. 

 

c) The graph of f(x+k)  

 

 

 

 

 The graph of f(x) is moved horizontally left if k>0 and right if k<0. 

d) The graph of f(kx) 

 

 

 

 

 The graph of f(x) is compressed if k>1 and stretched if k<1. 

 

 

  

y=x2 

y=x2-1 

y=x2+3 y=f(x) 

y=f(x)-k 

y=f(x)+k 

y=x2 y=(x+k)2 y=(x-k)2 

y=sin(x+90) 

 
 y=sinx 

y=sin(x-180) 

y=x2-4 

y=kx2-4 

y=sinx y=sin2x 
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New Related Graphs 
 

a) The graph of |𝑓(𝑥)| - the modulus function 

 i) When f(x)=x, f(x) is negative when x is negative. 

  But if f(x)=|𝑥|, f(x) takes the positive numerical value of x. 

  e.g. when x=-3, |𝑥|=3 so f(x) is always positive. 

The graph of f(x)=|𝑥| can be obtained from the graph of f(x)=x 

by simply flipping any parts of the graph of f(x), which appear 

below the x-axis, over the x-axis.      

 

 

 

 

  

ii) To sketch f(x)=|(𝑥 − 1)(𝑥 − 2)|, we start by sketching  

f(x)=(x-1)(x-2). We then reflect in the x-axis the part of the curve 

that is below the x-axis. 

 

 

 

 

 

b) Even Functions 

An even function is any function whose curve has the y-axis as a 

line of symmetry. Curves, having only even powers of x, are 

symmetrical on the y-axis.  

 

 

 

 

 

y=x y= |𝑥|  

f(x)=(x-1)(x-2) 

f(x)=|(𝑥 − 1)(𝑥 − 2)| 

y=x2 

𝑦 =
1

𝑥2
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An alternative method of defining an even function is the show that 

f(-x)=f(x) for all values of x. 

 

Examples: Show that these functions are even 

i) f(x)=x2    ii) 𝑓(𝑥) =
1

𝑥2 

 f(-x)=(-x)2     𝑓(−𝑥) =
1

(−𝑥)2 

 f(-x)=x2     𝑓(−𝑥) =
1

𝑥2 

 f(-x)=f(x)     f(-x)=f(x) 

 

c) Odd Functions 

An odd function is any function whose curve has 1800 rotational 

symmetry about the origin. Curves having only odd powers of x have 

1800 rotational symmetry about the origin. 

 

 

 

 

 

 

 An alternative method of defining an odd function is to show that  

 f(-x)=-f(x), for all values of x. 

  

Examples: Show that this function is odd 

f(x)=x3 

f(-x)=(-x)3 

f(-x)=-x3
 

f(-x)=-f(x) 

 

 

 

 

y=x3 



18 
 

Exercise 5: 

1 Write down the equations of the inverses of the following functions: 

 a) f(x)=2x   b) f(x)=2-x   c) f(x)=
2

𝑥
 

 d) f(x)=
x2    e) f(x)=1-2x  f) f(x)=ln(x-2) 

 

2 Evaluate: 

 a) 𝑠𝑖𝑛−1 (
√3

2
)  b) 𝑡𝑎𝑛−1 (

1

√3
)   c) 𝑡𝑎𝑛−1(1) 

d) 𝑠𝑖𝑛−1 (
1

2
)  e) 𝑐𝑜𝑠−1 (−

√3

2
)  f) 𝑡𝑎𝑛−1(√3) 

 

3 Sketch the following graph of the graph y=f(x) for each part of the 

following question. 

 On separate graphs, sketch the graphs of: 

 a) f(x-3)  b) f(x+3)  c) f(x)+2 

 d) 2f(x)  e) –f(x)  f) f(-x) 

  

 

4 Sketch the graphs of y=f(x) and y=|𝑓(𝑥)|: 

 a) f(x)=x+2  b) f(x)=5-2x  c) f(x)=x2-2x-3 

 d) f(x)=3x-x2  e) f(x)=x3+1  f) f(x)=
1

𝑥
− 2 

 

5  Which of the following functions are odd, even or neither? 

 a) )2)(4()(  xxxf  b) 53)( 2  xxf   c) 
32)( xxxf 

 d) xxf 2sin)(    e)  
x

xxf
1

)(    f)  
x

xxf
1

)( 

  

g) xxxf cossin)(   h) 
2

)( xexf     i) 
xx eexf )(

  

j) 
xx eexf )(   k)  xxf ln)(    l)  xxxf cossin)(   

 

  

(-1,3) 

(0,2) 

(-3,0) 

y=f(x) 

  (2,1) 
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N7 Motion and Optimisation AAC 1.5 
 

Motion in a Straight Line 
 

Take the x-axis to be the straight line along which the motion takes place. 

The displacement is defined as the distance from the origin in time t and 

is denoted as x(t). 

 

 

 

Velocity is defined as the rate of change of displacement with respect to 

time is denoted by v(t). 

 𝑣(𝑡) =
𝑑

𝑑𝑡
(𝑥(𝑡))      or simply     𝑣 =

𝑑𝑥

𝑑𝑡
 

Acceleration is defined as the rate of change of velocity with respect to 

time and is denoted by a(t). 

 𝑎(𝑡) =
𝑑

𝑑𝑥
(𝑣(𝑡))     or simply   𝑎 =

𝑑𝑣

𝑑𝑡
=

𝑑2𝑥

𝑑𝑡2 

If this has a positive value, it is called acceleration, a negative value is 

called deceleration. 

Another notation used is 

𝑥 = displacement     �̇� = velocity   �̈� = acceleration 

 

Examples 

 

1 A car is travelling along a straight road. The distance, x metres, 

travelled in t seconds is x = 10t – 5t2. 

 Find the velocity when t = 0.5 secs. 

  x = 10t – 5t2 

  v = 10 – 10t 

  at t = 0.5, v = 10 – 5 = 5m/s 

 

 

 

 

0 x(t) x 
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2 A car it travelling along a straight line. Its velocity, v metres per 

second, in t seconds, is v=10 + 6t2 – t3. 

 Find the acceleration when t = 3 secs. 

   v=10 + 6t2 – t3 

  a = 12t – 3t2 

  at t = 3, a = 36 – 27 = 9m/s2 

 

3 A car is travelling along a straight road. Its distance, x metres, 

travelled in t seconds, is x = 5 + 2t + t3. 

 Find the velocity and acceleration at t = 3. 

  x = 5 + 2t + t3 

  v = 2 + 3t2 

  at t = 3, v = 2 + 27 = 29m/s 

  a = 6t 

  at t = 3, v = 18m/s2 

 

Exercise 1 

1 A body moves in a straight line and the motion is such that x, the 

number of metres from a fixed point after t seconds, is given by 

   x = 3 – 4t + t2 

 a) How far is the body from the fixed point at the start? 

 b) What is the position after 4 seconds? 

 c) What is its velocity after 3 seconds? 

 d) What is its initial acceleration? 

 

2 If x = 4t3 – 3t2 – 2t – 1, where x is in metres and t is in seconds, find 

 a) The velocity at the end of the 3rd and 4th seconds. 

 b) The acceleration at the end of the 3rd and 4th seconds. 

 c) The average velocity during the 4th second. 

 d) The acceleration during the 4th second. 
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3 A motor bike starts from rest and its displacement x metres after t 

seconds is given by 𝑥 =
1

6
𝑡3 +

1

4
𝑡2. 

 Calculate the initial acceleration and the acceleration at the end to 

the 2nd second. 

 

4  A body moves along a straight line so that after t seconds its 

displacement from a f ixed point O on the line is x metres. 

 If x= 3t2(3-t), find  

 a) the initial velocity and acceleration. 

 b) the velocity and acceleration after 3 seconds. 
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Stationary Points  

 

Consider a function f(x) with a minimum  

turning point at x=a. When we draw tangents 

to the left of a they slope down so f’(x) is 

negative. At f’(a)=0. To the right of a the 

tangents slope upwards so f’(x) is positive 

 

Possible f’(x) graphs are shown below. 

 

 

 

 

 

 

 

 

Now think of drawing tangents to f’(x) graphs to obtain the graphs of f’’(x). 

 

 

 

 

 

 

To check that both cases are possible consider f(x) = x2 + 3 and  

f(x) = (x-2)2 + 3. 

Drawing similar graphs around a maximum turning point or point of 

inflexion will show that f’’(x) = 0 is possible. 

 

 

a 

f(x) 

x 

a 

f’(x) 

x a 

f’(x) 

x 

a 

f’’(x) 

x a 

f’’(x) 

x 
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However we do seem to be able to conclude the following: 

 If f’’(a)>0,  then f(x) has a minimum turning point at x=a. 

 If f’’(a)<0, then f(x) has a  maximum turning point at x=a. 

If f’’(a)=0, we have no information on the nature of the stationary 

point and must use a tale of sign as before. 

The above applies only when f’(a)=0. So use the second derivative test 

when the second derivative is easy to find, if not then use a table of sign. 

 

Examples 

1 Sketch the graph of the function f(x) = (x+2)(x-1)2. 

  f’(x) = (x-1)2 + 2(x+2)(x-1) 

  For stationary points set f’(x)=0. 

   (x-1)2 + 2(x+2)(x-1) = 0 

      (x-1)[(x-1)+2x+4] = 0 

               (x-1)(3x+3) = 0 

       3(x-1)(x+1) = 0 

    x=1 of x=-1 

  Stationary points at (-1,4) and (1,0). 

  f’’(x) = 6x 

  f’’(-1) is negative, therefore (-1,4) is a maximum turning point. 

  f’’(x) is positive, therefore (1,0) is a minimum turning point. 

  When  f(x) = 0, (x+2)(x-1)2 = 0 

       x=-2 or x=1 

  The curve crosses the x-axis at (-2,0) and (1,0). 

  When x = 0, f(0) = 2. 

  The curve crosses the y-axis ay (0,2). 

 

 

 

 

 

 

 

 

(-1,4) 

(-2,0) 

(0,2) 

 (1,0) 
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2 Find the co-ordinates and nature of the stationary points on the 

curve  f(x) = x3 – 81lnx. 

  𝑓′(𝑥) = 3𝑥2 −
81

𝑥
 

  For stationary points, set f’(x) = 0. 

  3𝑥2 −
81

𝑥
= 0 

  3𝑥3 − 81 = 0 

      𝑥3 = 27 

        𝑥 = 3, 𝑦 = 27 − 81𝑙𝑛𝑥 

  𝑓 ′′(𝑥) = 6𝑥 +
81

𝑥2 

  f’’(3) is positive, therefore (3,27-81lnx) is a minimum t.p. 

 

3 Find the co-ordinates and nature of the stationary point on the curve. 

  f(x) = ex – 4x 

  f’(x) = ex – 4 

  For stationary points, set f’(x)=0. 

  ex – 4 = 0 

        ex = 4   

         x = ln4, y = 4 – 4ln4 

  f’’(x) = ex 

  f(ln4) is positive, therefore (ln4,4-4ln4) is a minimum t.p. 

 

Exercise 2: Use the second derivative to find the stationary values and 

their nature for the following functions. 

a)  y = x – lnx   b)  y = xlnx c)  y = xe-x  d)  y = sinӨ + 
1

2
sin2Ө 
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Differentiable Functions  

Not all functions are differentiable everywhere.  

A maximum or minimum can occur at a point where f’(x) is not defined. 

Consider the piecewise function detailed below and its graph 

 

𝑓(𝑥) = {
−𝑥   𝑤ℎ𝑒𝑛 − 2 ≤ 𝑥 ≤ 0

𝑥2 𝑤ℎ𝑒𝑛 0 ≤ 𝑥 ≤ 2
 

 

 
 

Consider the tangent at (0,0):  To the Left To the Right 

      f(x) = -x   f(x) = x2 

      f’(x) = -1   f’(x) = 2x 

      f’(0) = -1   f’(0) = 0 

The left derivative is -1, the right derivative is 0. f’(x) does not exist at 

(0,0). From the graph, the minimum value of f(x) is 0, the maximum value 

occurs and an end point and is 4. 

 

Exercise 3  

1 𝑓(𝑥) = {
−𝑥2,    𝑥 < 0

𝑥2,      𝑥 ≥ 0
     

By sketching their graphs, show that f(x) and f’(x) are continuous but 

f’’(x) is not. 

 

2 𝑓(𝑥) = {
𝑥2,    0 ≤ 𝑥 ≤ 1

2 − 𝑥, 1 ≤  𝑥 ≤ 2
     

 Find the maximum value of f(x). 

 

3 𝑓(𝑥) = {
2𝑥2 − 2𝑥 − 2, 0 ≤ 𝑥 < 2
4 − 𝑥,                2 ≤ 𝑥 < 4

(𝑥 − 4)(𝑥 − 8), 4 ≤ 𝑥 ≤ 7
 

State the maximum and minimum values of f(x) and the coordinates 

of any point where f’(x) does not exist. 
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Optimisation 

 
Example: An isosceles triangle is inscribed inside  

a circle with radius r. Show that the area of 

the triangle is  

 A=r2sinӨ(1+cosӨ) 

where Ө is the angle between the equal  

sides. 

Find the maximum possible area of 

the triangle. 

 

From sinӨ = 
𝑥

𝑟
   ⟹  x=rsinӨ and from cosӨ = 

𝑦

𝑟
   ⟹ y = rcosӨ 

The base of the triangle is 2rsinӨ and the height is  r+rcosӨ 

 Area = 
1

2
x2rsinӨ(r+rcosӨ) 

       A=r2sinӨ(1+cosӨ) 

 A(Ө)= r2sinӨ + r2sinӨ cosӨ 

 A(Ө)= r2sinӨ + 
1

2
r2sin2Ө 

 A’(Ө)= r2cosӨ + r2cos2Ө   r2 is a constant 

 For stationary points, set A’(Ө)=0 

 r2cosӨ + r2cos2Ө=0 

 r2(2cos2 Ө+cos Ө-1)=0 

 r2(2cos Ө-1)(cos Ө+1)=0 

 cos Ө = 
1

2
   or   cos Ө = -1 

 Ө = 
𝜋

6
                       Ө = 𝜋  n/a 

 Stationary value at Ө = 
𝜋

6
 

 A’’(Ө) = -r2sin Ө – 2r2sin2 Ө 

 A’’(
𝜋

6
) is negative, there is a maximum stationary value at Ө = 

𝜋

6
 

 The maximum area is : A = r2sin
𝜋

6
 (1+cos

𝜋

6
) 

      A = r2√3

2
(1 +

1

2
) 

      A = 
3√3

4
 r2 

Ө 

y 

r 

r r Ө 

x 

Remember your exact 

values. 

All angles in Calculus 

questions are measured 

in radians. 
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Exercise 4 

1 Four squares each of side of s cm are cut from the corners of a 

metal square of side 16 cm. The metal is then bent to make an open 

topped tray of volume V cm3. 

 a) Prove that V = 4s3 – 64s2 + 256s 

 b) Find the value of s which makes the volume a maximum. 

 

2 A sector of a circle with radius r cm has an area of 16cm3. 

 a) Show that the perimeter P cm of the sector is given by  

   𝑃(𝑟) = 2 (𝑟 +
16

𝑟
)  

 b) Find the minimum value of P. 

 

3 A cylindrical tank has a radius or r metres and a height of h metres.  

 The sum of the radius and the height is 2 metres. 

 a) Prove that the volume, in m3, is given by :  V= 𝜋r2(2-r)  

 b) Find the maximum volume. 

 

4 ABCD is a kite which has AC as its axis. 

 Angle BAD is right angled and BC and  

 DC are 20cm. 

 a) Show that the area of triangle 

  BCD is given by the expression 

  200sin2Ө and find and expression for  

  BD2. 

 b) Use the expression for BD2 to show 

  that the area of triangle BAD is given by 

  the expression 200-200cos2Ө and hence  

show that the area of the kite is given by  

  the expression 

  A(Ө) = 200(1 – cos2Ө +sin2Ө) 

 c) Find the value of Ө which makes the area a  

maximum and find this maximum area.  

A 

B 

20 20 

 

2Ө 

D 

C 
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The Volume of Revolution 
 

The volume of revolution is formed when the area bounded by a curve 

y=f(x), x=a, x=b and the x-axis is rotated completely around the x-axis. 

  

 

 

 

 

Example: 

Find the volume generated, by rotating about the x-axis, the area 

enclosed by the curve y=x3-2x2 and the x-axis. 

The curve crosses the x-axis where  

  x3-2x2=0 

 x2(x-2)=0 

 x=0 and x=2 

 𝑉𝑜𝑙𝑢𝑚𝑒 = ∫ 𝜋(𝑥3 − 2𝑥2)2𝑑𝑥
2

0
 

        = 𝜋 ∫ (𝑥6 − 4𝑥5 + 4𝑥4) 𝑑𝑥
2

0
 

        = 𝜋 [
𝑥7

7
−

2𝑥6

3
+

4𝑥5

5
]

2
0
 

        = 𝜋 (
27

7
−

2×26

3
+

4×25

5
) − 0 

        =
128

105
𝜋 𝑢𝑛𝑖𝑡𝑠3 

 

The volume of revolution can also be formed when the area bounded by a 

curve y=f(x) (x=f(y)), the y-axis, y=a and y=a is rotated completely about 

the y-axis. 

 

  

𝑉𝑜𝑙𝑢𝑚𝑒 =  ∫ 𝜋𝑦2𝑑𝑥
𝑏

𝑎

 

𝑉𝑜𝑙𝑢𝑚𝑒 =  ∫ 𝜋𝑥2𝑑𝑦
𝑏

𝑎
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Example: 

Find the volume generated, by rotating about the y-axis, the area 

enclosed by the curve y=x2+1, x>0, the x-axis and the line y=2. 

 From y=x2+1, we get x2=y-1 

 𝑉𝑜𝑙𝑢𝑚𝑒 = ∫ 𝜋𝑥2𝑑𝑦
2

1
          

                          = 𝜋 ∫ (𝑦 − 1)𝑑𝑦
2

1
          

                          = 𝜋 [
𝑦2

2
− 𝑦]

2
1

          

                          = 𝜋 {(
22

2
− 2) − (

12

2
− 1)}          

                          =
𝜋

2
 𝑢𝑛𝑖𝑡𝑠3 

 

Exercise 5 

1 Find the volume of solids of revolution formed when the regions 

bounded by the following curves and the x-axis are rotated through 

one revolution about the x-axis. 

 a) 𝑦 =
4

𝑥
, 𝑥 = 1 𝑎𝑛𝑑 𝑥 = 4      b) 𝑦 = √𝑥, 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 4 

 

c) 𝑥 + 2𝑦 = 2, 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 2  d) 𝑦 =
1

𝑥2 , 𝑥 =
1

3
 𝑎𝑛𝑑 𝑥 =

1

2
 

 

e) 𝑦 = 𝑥(𝑥 − 1)     f) 𝑦 = √9 − 𝑥2 

 

g) 𝑦2 = 8𝑥, 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 4    h) 𝑦 = 𝑠𝑖𝑛𝑥, 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 2𝜋 

 

2 Find the volume of solids of revolution formed when the regions in 

the first quadrant bounded by the following curves and the y-axis are 

rotated through one revolution about the y-axis. 

 a) 𝑥 = √𝑦 𝑎𝑛𝑑 𝑦 = 4   b) 𝑥 = 𝑦2 𝑎𝑛𝑑 𝑦 = 1 
  

 c) 𝑥𝑦 = 1, 𝑦 = 3 𝑎𝑛𝑑 𝑦 = 6   d) 𝑦 = 4 − 𝑥2, 𝑦 = −4 𝑎𝑛𝑑 𝑦 = 4 
  

 e) 𝑥𝑦2 = 2, 𝑦 = 2 𝑎𝑛𝑑 𝑦 = 4     f) 𝑥 = 𝑦2 + 1, 𝑦 = −1 𝑎𝑛𝑑 𝑦 = 1 
  

 g) 𝑦 = 𝑙𝑛𝑥, 𝑦 = 2 𝑎𝑛𝑑 𝑦 = 5 
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N7 Summation and Mathematical 
Proof 

AAC 1.3 

 

Sigma (∑ ) Notation 
 

The sigma notation is used to write down a series. The series of square 

terms from 12 to 62 can be written as  

∑ 𝑘2

6

𝑘=1

= 12 + 22 +  32 + 42 + 52 + 62 

 

In general  

∑ 𝑓(𝑘) = 𝑓(1) + 𝑓(2) + 𝑓(3) + 𝑓(4) + ⋯ + 𝑓(𝑛)

𝑛

𝑘=1

 

 

Examples: 

1 Write the following series in full 

 a)  

∑ 𝑘(𝑘 + 1)

10

𝑘=5

 

∑ 𝑘(𝑘 + 1)

10

𝑘=5

= 5(5 + 1) + 6(6 + 1) + 7(7 + 1) + 8(8 + 1) + 9(9 + 1) + 10(10 + 1) 

   = 30 + 42 + 56 + 72 + 90 + 110 

 

 b)  

∑(2𝑘2 − 1)

4

𝑘=1

 

∑(2𝑘2 − 1)

4

𝑘=1

= 2 × 12 − 1 + 2 × 22 − 1 + 2 × 32 − 1 + 2 × 42 − 1 

     = 1 + 7 + 17 + 31 
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2 Express 1 + 4 + 7 + 10 + 13+. . . +298 in ∑  notation. 

  𝑓(𝑘) is the expression for the 𝑘𝑡ℎ  term of the series. 

  This is an arithmetic series with 𝑎 = 1 and 𝑑 = 3. 

  The 𝑘𝑡ℎ  𝑡𝑒𝑟𝑚 = 𝑎 + (𝑘 − 1)𝑑 

                                      = 1 + (𝑘 − 1)3 

                                                = 3𝑘 − 2 

  The final term is 298 and so 3𝑘 − 2 = 298 

              𝑘 = 100 

  Therefore  

1 + 4 + 7 + 10 + 13+. . . +298 = ∑(3𝑘 − 2)

100

𝑘=1

 

 

Exercise 1 

1 Write each of the following series in full  

a) 

∑ 𝑘2

5

𝑘=1

 

b) 

∑(2𝑘 − 1)

9

𝑘=1

 

c) 

∑
2520

𝑘

10

𝑘=1

 

2 Express each of the following series in the form  

∑ 𝑓(𝑘)

𝑛

𝑘=1

 

 a) 1 + 2 + 3 + 4 + ⋯ + 50      b) 5 + 10 + 15 + ⋯ + 30 

 c) 3 + 5 + 7+. . . +13      d) 3 + 7 + 11+. . . +199 

 

Special Summation 
 

∑ 𝑘 =
𝑛(𝑛 + 1)

2

𝑛

𝑘=1

 ∑ 𝑘2

𝑛

𝑘=1

=
𝑛(𝑛 + 1)(2𝑛 + 1)

6
 

∑ 𝑘3

𝑛

𝑘=1

=
𝑛2(𝑛 + 1)2

4
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Summation of a Series 
 

The above rules can be used to evaluate other series. For example 

∑(𝑎𝑘 + 𝑏)

𝑛

𝑘=1

= 𝑎 ∑ 𝑘 + ∑ 𝑏

𝑛

𝑘=1

𝑛

𝑘=1

=
𝑎𝑛(𝑛 + 1)

2
+ 𝑏𝑛 

Similar expansions can be used for 𝑓(𝑘) containing 𝑘2 and 𝑘3. 

 

Examples: Evaluate 

a) 

                   ∑(𝑘 + 2)

10

𝑘=1

                                         

∑(𝑘 + 2) =

10

𝑘=1

∑ 𝑘 +

10

𝑘=1

∑ 2

10

𝑘=1

 

                 =
𝑛(𝑛+1)

2
+ 2𝑛 

                     =
10(10 + 1)

2
+ 2 × 10 

                 = 75 

 

b) 

∑(4𝑘 + 5)

20

𝑘=1

 

∑(4𝑘 + 5)

20

𝑘=1

= 4 ∑ 𝑘

20

𝑘=1

+ ∑ 5

20

𝑘=1

 

                      =
4𝑛(𝑛 + 1)

2
+ 5𝑛 

                      =
4 × 20(20 + 1)

2
+ 5 × 20 

                    = 940 

 

Exercise 2: Evaluate 

a) 

∑ 𝑘

10

𝑘=1

 

b) 

∑ 2𝑘

20

𝑘=1

 

c) 

∑(2𝑘 + 3)

8

𝑘=1

 

d) 

∑(5𝑘 + 2)

20

𝑘=1

 

e) 

∑(3𝑘 − 1

10

𝑘=1

) 
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Proof by Induction 
 

The process is to firstly show that the conjecture is true for the first value. 

Then we assume the conjecture is true for a set value of 𝑛 i.e. 𝑛 = 𝑘. 

The next step is to use the previous step to prove the conjecture is true 

for 𝑛 = 𝑘 + 1. 

 

If the conjecture is true for 𝑛 = 𝑘 then it is true for 𝑛 = 𝑘 + 1. Since we 

have shown that it is true for the first value of 𝑛 say 𝑛 = 1, then it will be 

true for 𝑛 = 2. If it is true for 𝑛 = 2, then it will be true for 𝑛 = 3. If it is true 

for 𝑛 = 3, then it will be true for 𝑛 = 3 and so on. Therefore by induction 

the statement is true for all 𝑛. 

 

 

Example: Use proof by induction to prove the following statements 

a) Prove that 1 + 2 + 3 + 4 + ⋯ + 𝑛 =
1

2
𝑛(𝑛 + 1) 

Prove true for 𝑛 = 1:   𝐿𝐻𝑆 = 1                𝑅𝐻𝑆 =
1

2
× 1 × (1 + 1) = 1 

     So the statement is true for 𝑛 = 1. 

Assume true for 𝑛 = 𝑘:    1 + 2 + 3 + 4 + ⋯ + 𝑘 =
1

2
𝑘(𝑘 + 1) 

Prove true for 𝑛 = 𝑘 + 1:  1 + 2 + 3 + 4 + ⋯ + 𝑘 + (𝑘 + 1) 

          =
1

2
𝑘(𝑘 + 1) + (𝑘 + 1) 

          =
1

2
𝑘(𝑘 + 1) +

2

2
(𝑘 + 1) 

          =
1

2
(𝑘 + 1)(𝑘 + 2) 

          =
1

2
(𝑘 + 1)((𝑘 + 1) + 1) 

If true for 𝑛 = 𝑘 then  true for 𝑛 = 𝑘 + 1. Since we have shown that it is 

true for 𝑛 = 1, then true for 𝑛 = 2. Since it is true for 𝑛 = 2, then true for 

𝑛 = 3 and so on. Therefore by induction the statement is true for all 𝑛 ∈ ℕ. 

 

 

  

For 𝑛 = 𝑘 + 1: 

1

2
𝑛(𝑛 + 1) 

=
1

2
(𝑘 + 1)((𝑘 + 1) + 1) 
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b) Prove that 3 + 8 + 13 + 18 + ⋯ + (5𝑛 − 2) =
1

2
𝑛(5𝑛 + 1) 

Prove true when 𝑛 = 1: 𝐿𝐻𝑆 = 1                𝑅𝐻𝑆 =
1

2
× 1 × (1 + 1) = 1 

     So the statement is true for 𝑛 = 1. 

Assume true for 𝑛 = 𝑘: 3 + 8 + 13 + 18 + ⋯ + (5𝑘 − 2) =
1

2
𝑘(5𝑘 + 1) 

Prove true for 𝑛 = 𝑘 + 1:  3 + 8 + 13 + 18 + ⋯ + (5𝑘 − 2) + (5(𝑘 + 1) − 2) 

          =
1

2
𝑘(5𝑘 + 1) +

2

2
(5𝑘 + 3) 

          =
1

2
[𝑘(5𝑘 + 1) + 2(5𝑘 + 3)] 

          =
1

2
[5𝑘2 + 𝑘 + 10𝑘 + 6] 

          =
1

2
[5𝑘2 + 11𝑘 + 6] 

          =
1

2
(𝑘 + 1)(5𝑘 + 6) 

          =
1

2
(𝑘 + 1)(5(𝑘 + 1) + 1)) 

If true for 𝑛 = 𝑘 then  true for 𝑛 = 𝑘 + 1. Since we have shown that it is 

true for 𝑛 = 1, then true for 𝑛 = 2. Since it is true for 𝑛 = 2, then true for 

𝑛 = 3 and so on. Therefore by induction the statement is true for all 𝑛 ∈ ℕ. 

 

 

c) Prove that 8𝑛 is a factor of (4𝑛)! for all 𝑛 ∈ ℕ. 

Prove true when 𝑛 = 1: 81 = 8                (4)! = 24 

     8 is a factor of 24. 

     So the statement is true for 𝑛 = 1. 

Assume true for 𝑛 = 𝑘: 8𝑘 is a factor of (4𝑘)! 

Prove true for 𝑛 = 𝑘 + 1:  (4(𝑘 + 1))! 

          = (4𝑘 + 4)! 

          = (4𝑘 + 4)(4𝑘 + 3)(4𝑘 + 2)(4𝑘 + 1)(4𝑘)! 

          = (4𝑘 + 4)(4𝑘 + 3)(4𝑘 + 2)(4𝑘 + 1)(4𝑘)! 

          = 4(𝑘 + 1)(4𝑘 + 3)2(2𝑘 + 1)(4𝑘 + 1)(4𝑘)! 

          = 8(4𝑘)! (𝑘 + 1)(4𝑘 + 3)(2𝑘 + 1)(4𝑘 + 1) 

 8(4𝑘)! is a factor of (4(𝑘 + 1))! 

 Now 8𝑘 is a factor of (4𝑘)! 

 So 8 × 8𝑘 is a factor of 8(4𝑘)!   

 Therefore 8 × 8𝑘 = 8𝑘+1 is a factor of (4𝑘 + 4)! 
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If true for 𝑛 = 𝑘 then  true for 𝑛 = 𝑘 + 1. Since we have shown that it is 

true for 𝑛 = 1, then true for 𝑛 = 2. Since it is true for 𝑛 = 2, then true for 

𝑛 = 3 and so on. Therefore by induction the statement is true for all 𝑛 ∈ ℕ. 

 

 

d) Prove that 2𝑛 > 𝑛2 for all 𝑛 > 4, 𝑛 ∈ ℕ. 

Prove true when 𝑛 = 5: 25 = 32                52 = 25 

     32 > 25 

     So the statement is true for 𝑛 = 5. 

Assume true for 𝑛 = 𝑘: 2𝑘 > 𝑘2  

Prove true for 𝑛 = 𝑘 + 1: 2𝑘 > 𝑘2 

      2 × 2𝑘 > 2𝑘2 

         2𝑘+1 > 𝑘2 + 𝑘2 

         2𝑘+1 > 𝑘2 + 𝑘 × 𝑘 

         2𝑘+1 > 𝑘2 + 4𝑘     since 𝑘 > 4 

         2𝑘+1 > 𝑘2 + 2𝑘 + 2𝑘      

         2𝑘+1 > 𝑘2 + 2𝑘 + 1     since 𝑘 > 4 

                                              2𝑘+1 > (𝑘 + 1)2 

If true for 𝑛 = 𝑘 then  true for 𝑛 = 𝑘 + 1. Since we have shown that it is 

true for 𝑛 = 5, then true for 𝑛 = 6. Since it is true for 𝑛 = 7, then true for 

𝑛 = 8 and so on. Therefore by induction the statement is true for all 𝑛 ∈ ℕ. 

 

 

e) Prove that ∑ 𝑟2 =
1

6
𝑛(𝑛 + 1)(2𝑛 + 1)𝑛

𝑟=1  

 Prove true for 𝑛 = 1  

  𝐿𝐻𝑆 = ∑ 𝑟2 = 12 = 11
𝑟=1       𝑅𝐻𝑆 =

1

6
(1)(1 + 1)(2 × 1 + 1) = 1 

  True for 𝑛 = 1 

 Assume true for 𝑛 = 𝑘, 𝑘 ≥ 1  

  ∑ 𝑟2 =
1

6
𝑘(𝑘 + 1)(2𝑘 + 1)𝑘

𝑟=1  

 Prove true for 𝑛 = 𝑘 + 1  

  ∑ 𝑟2 = ∑ 𝑟2 + (𝑘 + 1)2𝑘
𝑟=1

𝑘+1
𝑟=1  

        =
1

6
𝑘(𝑘 + 1)(2𝑘 + 1) + (𝑘 + 1)2 
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        =
1

6
𝑘(𝑘 + 1)(2𝑘 + 1) +

6

6
(𝑘 + 1)2 

        =
1

6
(𝑘 + 1)[𝑘(2𝑘 + 1) + 6(𝑘 + 1)] 

        =
1

6
(𝑘 + 1)[2𝑘2 + 7𝑘 + 6] 

        =
1

6
(𝑘 + 1)(𝑘 + 2)(2𝑘 + 3) 

        =
1

6
(𝑘 + 1)((𝑘 + 1) + 1)(2(𝑘 + 1) + 1) 

 Hence if true for 𝑘, it is true for 𝑛 = 𝑘 + 1. 

 True for 𝑛 = 1 ⇒  True for 𝑛 = 2 since 𝑘 ≥ 1. 

 True for 𝑛 = 2 ⇒  True for 𝑛 = 3 and so on for all 𝑛. 

 Hence true for all 𝑛, by induction. 

 

f) Prove that ∑ 𝑟3 =
1

4
𝑛2(𝑛 + 1)2𝑛

𝑟=1  

 Prove true for 𝑛 = 1  

  𝐿𝐻𝑆 = ∑ 𝑟3 = 13 = 11
𝑟=1       𝑅𝐻𝑆 =

1

4
× 12(1 + 1)2 = 1 

  True for 𝑛 = 1 

 Assume true for 𝑛 = 𝑘, 𝑘 ≥ 1  

  ∑ 𝑟3 =
1

4
𝑘2(𝑘 + 1)2𝑘

𝑟=1  

 Prove true for 𝑛 = 𝑘 + 1  

  ∑ 𝑟2 = ∑ 𝑟3 + (𝑘 + 1)3𝑘
𝑟=1

𝑘+1
𝑟=1  

        =
1

4
𝑘2(𝑘 + 1)2 + (𝑘 + 1)3 

        =
1

4
𝑘2(𝑘 + 1)2 +

4

4
(𝑘 + 1)3 

        =
1

4
(𝑘 + 1)2[𝑘2 + 4(𝑘 + 1)] 

        =
1

4
(𝑘 + 1)2[𝑘2 + 4𝑘 + 4] 

        =
1

4
(𝑘 + 1)2(𝑘 + 2)2 

        =
1

4
(𝑘 + 1)2((𝑘 + 1) + 1)

2
 

 Hence if true for 𝑘, it is true for 𝑛 = 𝑘 + 1. 

 True for 𝑛 = 1 ⇒  True for 𝑛 = 2 since 𝑘 ≥ 1. 

 True for 𝑛 = 2 ⇒  True for 𝑛 = 3 and so on for all 𝑛. 

 Hence true for all 𝑛, by induction. 
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g) For all integers 𝑛 ≥ 10, 𝑛2 ≥ 10𝑛. 

 Prove true for 𝑛 = 10 

  𝑛2 = 100    10𝑛 = 100 

   𝑛2 = 10𝑛 so true for 𝑛 = 10  

 Assume true for 𝑛 = 𝑘   

  𝑘2 ≥ 10𝑘 

 Prove true for 𝑛 = 𝑘 + 1 

  (𝑘 + 1)2 = 𝑘2 + 2𝑘 + 1 

         ≥ 10𝑘 + 2𝑘 + 1  

         ≥ 10𝑘 + 2𝑘 + 10 − 9  

         ≥ 10(𝑘 + 1) + 2𝑘 − 9  

         ≥ 10(𝑘 + 1) + 2𝑘 − 9  since 2𝑘 − 9 ≥ 11  

  (𝑘 + 1)2 ≥ 10(𝑘 + 1) 

 Hence, it true for 𝑛 = 𝑘, true for 𝑛 = 𝑘 + 1. 

 True for 𝑛 = 10 ⇒  True for 𝑛 = 11 since 𝑘 ≥ 10. 

 True for 𝑛 = 11 ⇒  True for 𝑛 = 12 and so on for all 𝑛. 

 Hence true for all 𝑛, by induction. 

 

 

h) Show that 4𝑛 + 6𝑛 − 1 is divisible by 9 for all 𝑛 ≥ 1. 

 Prove true for  

  41 + 6 × 1 − 1 = 9 

  9 is divisible by 9. True for 𝑛 = 1 

 Assume true for  𝑛 = 𝑘 

  4𝑘 + 6𝑘 − 1 = 9𝑡 

 Prove true for 𝑛 = 𝑘 + 1 

      4𝑘+1 + 6(𝑘 + 1) − 1 

  = 4 × 4𝑘 + 6𝑘 + 5 

  = (4 × 4𝑘 + 24𝑘 − 4) − 18𝑘 + 9 

  = 4(4𝑘 + 6𝑘 − 1) − 18𝑘 + 9 

  = 4(9𝑝) − 9(2𝑘 + 1) 

  = 9(4𝑝 − 2𝑘 − 1) 

      4𝑘+1 + 6(𝑘 + 1) − 1 is divisible by 9 
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 Hence, it true for 𝑛 = 𝑘, true for 𝑛 = 𝑘 + 1. 

 True for 𝑛 = 1 ⇒  True for 𝑛 = 2 since 𝑘 ≥ 1. 

 True for 𝑛 = 2 ⇒  True for 𝑛 = 3 and so on for all 𝑛. 

 Hence true for all 𝑛, by induction. 

 

 

i) Prove that 𝑆𝑛 of the series 
1

1×2
+

1

2×3
+

1

3×4
+ ⋯ =

𝑛

𝑛+1
 

 Prove true for 𝑛 = 1  

  𝐿𝐻𝑆 =
1

1×2
=

1

2
   𝑅𝐻𝑆 =

1

1+1
=

1

2
 

  True for 𝑛 = 1 

 Assume true for 𝑛 = 𝑘 

  
1

1×2
+

1

2×3
+

1

3×4
+ ⋯ +

1

𝑘×(𝑘+1)
=

𝑘

𝑘+1
 

 Prove true for 𝑛 = 𝑘 + 1 

  
1

1×2
+

1

2×3
+

1

3×4
+ ⋯ +

1

𝑘×(𝑘+1)
+

1

(𝑘+1)×(𝑘+2)
=

𝑘

𝑘+1
+

1

(𝑘+1)×(𝑘+2)
 

                            =
𝑘(𝑘+2)

(𝑘+1)(𝑘+2)
+

1

(𝑘+1)(𝑘+2)
 

                            =
𝑘2+2𝑘+1

(𝑘+1)(𝑘+2)
 

                            =
(𝑘+1)2

(𝑘+1)(𝑘+2)
 

                            =
𝑘+1

𝑘+2
 

                            =
𝑘+1

(𝑘+1)+1
 

 Hence, it true for 𝑛 = 𝑘, true for 𝑛 = 𝑘 + 1. 

 True for 𝑛 = 1 ⇒  True for 𝑛 = 2 since 𝑘 ≥ 1. 

 True for 𝑛 = 2 ⇒  True for 𝑛 = 3 and so on for all 𝑛. 

 Hence true for all 𝑛, by induction. 
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Exercise 3: Prove the following statements by induction, 𝑛 ∈ ℕ. 

a) 1 + 3 + 5 + 7 + ⋯ + (2𝑛 − 1) = 𝑛2 

 

b) 5 + 7 + 9 + ⋯ + (2𝑛 − 1) = (𝑛 − 2)(𝑛 + 2), 𝑛 ≥ 3. 

 

c) 2𝑛 > 𝑛 

 

d) 1 + 2 + 22 + 23 + ⋯ + 2𝑛−1 = 2𝑛+1 − 1  

 

e) 
1

1×2
+

1

2×3
+

1

3×4
+ ⋯ +

1

𝑛(𝑛+1)
=

𝑛

𝑛+1
 

 

f)  32𝑛 − 1 is a multiple of 8 

 

g) 13 + 23 + 33 + ⋯ + 𝑛3 =
1

4
𝑛2(𝑛 + 1)2 

 

h) 3𝑛 > 𝑛3  for all 𝑛 ≥ 4 

 

i)  De Moivre’s Theorem 

 

j)  Binomial Theorem 

 

k) ∑ 𝑟(𝑟 + 1) =𝑛
𝑟=1

1

3
𝑛(𝑛 + 1)(𝑛 + 2) 

 

l) ∑ 𝑟(𝑟 + 1)(𝑟 + 2) =𝑛
𝑟=1

1

4
𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3) 

 

m) 𝑆𝑛 of the series 
1

1×3
+

1

3×5
+

1

5×7
+ ⋯ =

𝑛

2𝑛+1
  

 

n) 𝑆𝑛 of the series 
1

1×2×3
+

1

2×3×4
+

1

3×4×5
+ ⋯ =

1

4
−

1

2(𝑛+1)(𝑛+2)
  

 

o) 𝑛3 + 3𝑛2 − 10𝑛 is divisible by 3 

 

p) 7𝑛 + 4𝑛 + 1𝑛 is divisible by 6 
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q) For all integers 𝑛 > 2, 2𝑛 > 2𝑛 

 

r) For all integers 𝑛 ≥ 4, 3𝑛 > 𝑛3 

 

 

2 Use the results of ∑ 𝑟𝑛
𝑟=1 ,  ∑ 𝑟2𝑛

𝑟=1  and ∑ 𝑟3𝑛
𝑟=1  to prove by direct 

method  

a) ∑ 𝑟(𝑟 + 1) =𝑛
𝑟=1

1

3
𝑛(𝑛 + 1)(𝑛 + 2) 

 

b) ∑ 𝑟(𝑟 + 1)(𝑟 + 2) =𝑛
𝑟=1

1

4
𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3) 

 
 

 

 

  



41 
 

N7 Other Methods of Proof GPS 1.5 
 

Notation and Terminology 
 

A statement of the form “If.....then.....” is called an implication.  

For example 1) If 𝑥 > 5 then 2𝑥 > 10 

   2) If 𝑥 = 5 then 𝑥2 = 25 

These can be written in shorthand 

   1) 𝑥 > 5 ⇒ 2𝑥 > 10 

   2) 𝑥 = 5 ⇒ 𝑥2 = 25 

We note that both of these statements are true, but not all statements (or 

implications) will be true. 

For examples  𝑥 = 4 ⇒ 2𝑥 = 9 is false. 

 

 

Negation of a Statement 
  

Statement:  A rhombus has four equal sides.      (can be true or false) 

Negation:    A rhombus does not have four equal sides. 

 

If a statement is true then the negation is false. 

If a statement if false then the negation is true. 

 

Given that 𝑝 represents a statement, the negation is written – 𝑝 (reads 

“not 𝑝”), and is such that is 𝑝 is true, −𝑝 is false; is 𝑝 is false, −𝑝 is true. 

 

Examples: Negate the following statements 

a) “All cats have tails.” 

  𝑝: All cats have tails. 

Since the given statement is taken to be true for every cat, the 

negation must assert that at least one cat has no tail. 

−𝑝: Some cats have tails. 

 

b) “Some pilots are women.” 
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 𝑝: Some pilots are women. 

Since the given statement asserts that there is at least one pilot who 

is a women, the negation must assert that all pilots are not women. 

 −𝑝: No pilots are women. 

 

The negation of “all” is “some”. 

The negation of “some” is “no”. 

The negation of “no” is “some”. 

 

Exercise 1 

1 Which of the following is a negation of “All boys are adventurous”? 

 a) No boys are adventurous. 

 b) All boys are unadventurous. 

 c) Some boys are not adventurous. 

 d) No boys are adventurous. 

 

2 Which of the following is a negation of  

“No visitors may walk on the grass”?   

 a) All visitors may walk on the grass. 

 b) Some visitors may not walk on the grass. 

 c) All visitors may not walk on the grass. 

 d) Some visitors may walk on the grass. 

 

3 Write down the negation of each of the following statements: 

 a) For all real 𝑥, 𝑥2 is positive. 

 b) Some pupils find mathematics difficult. 

 c) No dogs like cats. 

 d) There exists a positive integer 𝑥 such that 𝑥 + 3 > 0. 

 e) Every parallelogram has half turn symmetry. 

 f) No schoolboy lies. 

 g) A number which has zero in the units place is divisible by five. 

 h) All numbers of the form 2𝑛 − 1, (𝑛 an integer), are prime. 
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The Converse of a Statement 
 

Statement: If a triangle is right-angled, then the square of the 

hypotenuse is equal to the sum of the squares on the 

other two sides. 

Converse: If the square in the longest side of a triangle is equal to the 

sum of the squares on the other two sides, then the 

triangle is right angled. 

 

If 𝑝 ⇒ 𝑞 then the converse is 𝑞 ⇒ 𝑝. 

 

In the cases of a statement and its converse: 

a) The statement may be true and the converse false. 

b) The statement may be false and the converse true. 

c) Both may be false or both may be true. 

 

Exercise 2: State the converse of each of the following, and show by a 

counter example that the converse is false. 

a) If a number ends in 0, it is divisible by 5. 

b) All primes greater than 2 are odd numbers. 

c) If a quadrilateral is a square, its diagonals intersect at right angles. 

d) 𝑥 = 3  ⇒   𝑥3 = 9. 

e) If two numbers are odd then their sum is even. 

f) If two integers are even, then their product is even. 

 

 

Equivalent Statements  
 

If a statement and its converse are true then the implication can be 

replaced by the two-way implication sign ⇔. 

 

If 𝑝 ⇒ 𝑞 and 𝑞 ⇒ 𝑝 are both true then we can write 𝑝 ⇔ 𝑞.  

This is sometimes read as “𝑝 (is true) if and only if 𝑞 (is true)” or “𝑝 iff 𝑞”. 
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If 𝑝 ⇒ 𝑞, we say that 𝑝 is a sufficient condition for 𝑞; if 𝑞 ⇒ 𝑝, we say that 

𝑝 is a necessary condition for 𝑞. 

 

Examples: In each of the following, say whether the first statement is 

i)   a necessary condition 

ii)  a sufficient condition 

iii) both necessary and sufficient 

iv) neither   

for the second condition. 

 

a) 𝑝: John plays the piano. 𝑞: John is a concert pianist. 

Since 𝑞 ⇒ 𝑝, the first statement is a necessary statement for the 

second as John must be able to play the piano to be concert pianist, 

but since 𝑝 ⇏ 𝑞, it is not a sufficient condition.   

 

b) 𝑝: ABCD is a rhombus.     𝑞: The diagonals of ABCD bisect each other. 

Since 𝑝 ⇒ 𝑞, the first statement is a sufficient condition for the 

second as the diagonals of a rhombus bisect each other. Since 𝑞 ⇏

𝑝, it is not a necessary condition.   

 

 

 

 

Exercise 3 

In each of the following, say whether the first statement is 

i)   a necessary condition 

ii)  a sufficient condition 

iii) both necessary and sufficient 

iv) neither   

for the second condition. 

a)  𝑝: There are more than 8 people in this room.  

             𝑞: There are 9 people in this room. 

b)  𝑝: ABCD is a parallelogram.  

                𝑞: The diagonals of ABCD are perpendicular. 
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2 Which of the following statements are necessary or/and sufficient for 

the statement 𝑞: “Natural number 𝑛 is divisible by 6” to be correct? 

 a) 𝑝: 𝑛 is divisible by 3   b) 𝑝: 𝑛 is divisible by 9 

 c) 𝑝: 𝑛 is divisible by 12   d) 𝑝: 𝑛2 is divisible by 12 

 e) 𝑝: 𝑛 = 384     f) 𝑝: 𝑛 is even and divisible by 3 

 g) : 𝑛 = 𝑚(𝑚 + 1)(𝑚 + 2), where 𝑚 is some natural number 

 

 

Contrapositive of a Statement 
 

If 𝑝 ⇒ 𝑞 then the contrapositive is −𝑞 ⇒ −𝑝. 

The negation of 𝑞 implies the negation of 𝑝.   

If 𝑝 ⇒ 𝑞 is true then −𝑞 ⇒ −𝑝 must also be true. 

Similarly, if 𝑝 ⇒ 𝑞 is false then −𝑞 ⇒ −𝑝 must also be false. 

This is important logical method of proving by indirect proof.  

 

Disproving Conjectures – Using Counter Examples 
 

A conjecture is a statement someone thinks may be true but it may be 

based on incomplete evidence. We can disprove some conjectures and 

statements by producing a single counter example. 

 

Examples: Disprove the following conjectures by finding a counter 

example. 

a) 𝑛2 + 𝑛 + 41 is prime number for all 𝑛 ∈ ℕ. 

  Take 𝑛 = 41:     𝑛2 + 𝑛 + 41 = 412 + 41 + 41  

                                = 41(41 + 1 + 1) 

                                = 41 × 43 which is not prime. 

  So the statement is false. 

 

b) For any real numbers 𝑎 and 𝑏: 𝑎2 > 𝑏2 ⇒ 𝑎 > 𝑏. 

Take 𝑎 = −3 and 𝑏 = 1. 

  Then (−3)2 > 12 because 9 > 1 but −3 is not greater than 1. 

  So the statement is false. 
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c) For any real numbers 𝑎, 𝑏, 𝑐: 𝑎 > 𝑏 ⇒ 𝑎𝑐 > 𝑏𝑐. 

  Take 𝑎 = 2, 𝑏 = 1, 𝑐 = −3  

  Then 𝑎 > 𝑏 since 2 > 1 

  𝑎𝑐 = 2 × (−3) = −6,    𝑏𝑐 = 1 × (−3) = −3  

so 𝑎𝑐 is not greater that 𝑏𝑐 since −6 < −3 

So the statement is false. 

 

d) For all real numbers 𝑎 and 𝑏: |𝑎| + |𝑏| ≤ |𝑎 + 𝑏|. 

  Take 𝑎 = 1, 𝑏 = −2 

  |𝑎| + |𝑏| = |1| + |−2| = 1 + 2 = 3 

  |𝑎 + 𝑏| = |1 + (−2)| = |−1| = 1 

  But 3 is not less than or equal to 1. 

So the statement is false. 

 

Exercise 4 

1 Find another counter example for the examples above. 

 

2 Find a counter example to disprove the following conjectures 

 a) For all real values of 𝑥: 𝑥2 − 𝑥 ≥ 0 

 

 b) For any real numbers 𝑎, 𝑏, 𝑐 and 𝑑:  

  𝑎 > 𝑏 and 𝑐 > 𝑑 ⇒ 𝑎𝑐 > 𝑏𝑑 

 

 c) For any real numbers 𝑎 and 𝑏:  
𝑎

𝑏
> 1 ⇒ 𝑎 = 𝑏 

 

 

Converse and Two Way Implication 
 

Consider the converse of > 5 ⇒ 2𝑥 > 10 .  2𝑥 > 10 ⇒  𝑥 > 5. This is also 

true. So we can write 𝑥 > 5 ⇔ 2𝑥 > 10. This statement can be read from 

left to right and from right to left.  

We can read the statement as 

 𝑥 > 5 if and only if 2𝑥 > 10             [if and only if can be written as iff]  

or 𝑥 > 5 is equivalent to 2𝑥 > 10 
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Not all converses are true. 

The converse of 𝑥 = 5 ⇒ 𝑥2 = 25 is  

𝑥2 = 25 ⇒ 𝑥 = 5 but 𝑥 could equal −5. Therefore the statements are not 

equivalent. 

 

Exercise 5 

1 State in words the converse of each statement and say if it is true of 

false. If the converse is false, give a counter example. 

 a) If a number ends in zero then it is divisible by 5. 

 

 b) If 𝑛 is a prime number greater than 2 then 𝑛 is an odd number. 

 

 c) 𝑥 = 3 ⇒  𝑥2 = 9 

 

 d) If 𝑎 and 𝑏 are odd numbers then 𝑎 + 𝑏 is even. 

 

 e) If 3 is a root of 𝑥2 + 𝑥 − 𝑘 = 0  then 𝑘 is a multiple of 3. 

 

2 State whether the implication can be replaced by the two way 

implication. 

 a) 𝑎 = 𝑏 ⇒ 𝑎 + 𝑐 = 𝑏 + 𝑐   b) 𝑥 = 𝑦 ⇒ −𝑥 = −𝑦 

 

 c) 𝑛 = −3 ⇒  𝑛2 = 9     d) If 𝑛 is odd then 𝑛2 is odd 𝑛 ∈ ℤ 

 

 e) If a triangle ABC is right angled at A ⇒   𝑎2 = 𝑏2 + 𝑐2. 

 

 f) If 𝑦 = 1 − 𝑥2 then 
𝑑𝑦

𝑑𝑥
= −2𝑥 
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The Form of Numbers 
 

What are even natural numbers? We can list them: 2, 4, 6, 8, 10 . . . 

We can say that these are all of the form 2𝑘 where 𝑘 is a natural number. 

We can say that a number, 𝑛, is even if and only if 𝑛 = 2𝑘 for some 𝑘 ∈ ℕ. 

 

The odd numbers are 1, 3, 5, 7, 9... These are all 1 less than an even 

number, so we can say that a number, 𝑛, is odd if and only if 𝑛 = 2𝑘 − 1 

for some 𝑘 ∈ ℕ. Alternatively we can write them as 𝑛 = 2𝑘 − 1 for some 

𝑘 ∈ 𝕎. In this case we are thinking of the odd numbers as one more than 

the even numbers. Therefore all whole numbers can be written as 2𝑘 or 

2𝑘 + 1 for some 𝑘 ∈ 𝕎.   

 

 

 

 

 

 

 

Example: 𝑛 = (2𝑘 − 1)2 + 3(2𝑘 − 1) for some 𝑘 ∈ ℕ, is 𝑛 even or odd? 

  𝑛 = (2𝑘 − 1)2 + 3(2𝑘 − 1) 

        ⇒ 𝑛 = 4𝑘2 − 4𝑘 + 1 + 6𝑘 − 3 

        ⇒ 𝑛 = 4𝑘2 + 2𝑘 − 2 

        ⇒ 𝑛 = 2(2𝑘2 + 2𝑘 − 1) 

        ⇒ 𝑛 = 2𝑡 for some 𝑘 ∈ ℕ, since 2𝑘2 + 2𝑘 − 1 ∈ ℕ 

        ⇒ 𝑛  is even. 

 

We can also express all whole numbers in terms of 3 or 4 or 5 etc. 

 

All whole numbers take one of the forms: 3𝑘, 3𝑘 + 1, 3𝑘 + 2 for some 𝑘 ∈

𝕎. Note that 3𝑘 + 3 = 3(𝑘 + 1) and this is back to the original form. 

If a number, 𝑛, is divisible by 3 we can write it in the form 𝑛 = 3𝑘 for some 

𝑘 ∈ 𝕎. If a number is not divisible by 3 then it must be in the form 3𝑘 + 1 

or  3𝑘 + 2.     

To show 𝑛 is even we must show it to be written as two times 

a natural number. 

To show 𝑛 is odd we must show it to be written as two times 

a natural number plus (or minus) one.  
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All whole numbers take one of the forms: 4𝑘, 4𝑘 + 1, 4𝑘 + 2, 4𝑘 + 3 for 

some 𝑘 ∈ 𝕎. If a number, 𝑛, is divisible by 4 we can write it in the form 

𝑛 = 4𝑘 for some 𝑘 ∈ 𝕎. If a number is not divisible by 4 then it must be in 

the form 4𝑘 + 1, 4𝑘 + 2 or  4𝑘 + 3. 

 

 

Methods of Proof 
 

Direct Proof 

Use algebra to represent the values presented, and manipulate them to 

achieve the desired conclusion. 

 

1) The sum of any two even integers is even. 

2) The negative of any even integer is even. 

3) The sum of any two odd numbers is even. 

4) If n is odd then n2 is even. 

5) The product of two odd integers is odd. 

6) If n is prime then n2 is prime. 

7) The difference of an even integer and an odd integer is odd. 

8) The sum of two rational numbers is rational. 

9) The product of two rational numbers is rational. 

10) If n is even then 7n + 4 is even,   𝑛 ∈ 𝑁 

11) If m is even and n is odd then m+n is odd,  𝑚, 𝑛 ∈ 𝑁 

12) n3 – n is always divisible by 6. 

13) 6n + 4 is always divisible by 10,  𝑛 ∈ 𝑁 

14) If n is an odd integer, then n2 – 1 is divisible by 8. 
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Proof by Contradiction 

To prove a theorem by direct means is sometimes difficult and sometimes 

impossible. In such cases we can proof by contradiction where we begin 

by assuming the opposite of the implication is true. 

 

Examples: Use proof by contradiction to show these statements are true.  

a)  Let 𝑛 be a natural number. If 7𝑛 is even then 𝑛 is even.  

Proof Assume 7𝑛 is even and 𝑛 is odd. 

If 𝑛 is odd then 𝑛 = 2𝑘 − 1 for some 𝑘 ∈ 𝕎. 

                           7𝑛 = 7(2𝑘 − 1) 

    = 14𝑘 − 7 

    = 14𝑘 − 6 − 1 

    = 2(7𝑘 − 3) − 1 

  = 2𝑡 − 1    for some 𝑡 ∈ 𝕎. 

 ⇒ 7𝑛 is odd 

This is a contradiction, since we assumed that 7𝑛 was even. 

Hence result. 

 

 

 

b) Let 𝑚 be a natural number. If 𝑚2 is even then 𝑚 is even. 

Proof Assume 𝑚2 is even and 𝑚 is odd. 

  If 𝑚 is odd then 𝑚 = 2𝑘 − 1 for some 𝑘 ∈ 𝕎. 

   𝑚2 = (2𝑘 − 1)2 

         = 4𝑘2 − 4𝑘 + 1 

         = 2(2𝑘2 − 2𝑘) + 1 

         = 2𝑡 + 1   for some 𝑡 ∈ 𝕎. 

      ⇒ 𝑚2 is odd 

This is a contradiction, since we assumed that 𝑚2 was even. 

Hence result. 
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c)  Let 𝑛 be a natural number. If 9𝑛 is odd ⇒ 𝑛 is odd.  

Proof Assume 9𝑛 is odd and 𝑛 is even. 

If 𝑛 is even then 𝑛 = 2𝑘 for some 𝑘 ∈ 𝕎. 

 9𝑛 = 9(2𝑘) 

        = 2(9𝑘) 

        = 2𝑡     for some 𝑡 ∈ 𝕎. 

                        ⇒ 9𝑛 is even 

This is a contradiction, since we assumed that 9𝑛 was odd. 

Hence result. 

 

d) Let 𝑚 and 𝑛 be integers. If 𝑚𝑛 is odd then 𝑚 and 𝑛 are both odd. 

Proof Assume that 𝑚𝑛 is odd and that 𝑚 and 𝑛 are not both odd i.e. 

one of 𝑚 or 𝑛 is even, say 𝑛. 

If 𝑛 is even then 𝑛 = 2𝑘 for some 𝑘 ∈ 𝕎. 

 𝑚𝑛 = 𝑚 × 2𝑘 

        = 2𝑚𝑘 

        = 2𝑡   for some 𝑡 ∈ 𝕎 

    ⇒ 𝑚𝑛 is even 

This is a contradiction, since we assumed that 𝑚𝑛 was odd. 

Hence result. 

 

 

e) Prove that √2 is irrational. 

Proof Assume that √2  is rational.  

If √2  is rational then it can be written as a fraction in its lowest 

terms i.e. √2 =
𝑚

𝑛
, where 𝑚 and 𝑛 have no common factors. 

     √2 =
𝑚

𝑛
 

 ⇒ 2 =
𝑚2

𝑛2  

 ⇒ 2𝑛2 = 𝑚2 

 ⇒ 𝑚2 is even 

 ⇒ 𝑚 is even 

 ⇒ 𝑚 = 2𝑘  for some 𝑘 ∈ ℤ 
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 ⇒ 2𝑛2 = (2𝑘)2  since 2𝑛2 = 𝑚2 

 ⇒ 2𝑛2 = (2𝑘)2 

 ⇒ 2𝑛2 = 4𝑘2 

 ⇒ 𝑛2 = 2𝑘2 

 ⇒ 𝑛2 is even 

 ⇒ 𝑛 is even 

Therefore 𝑚 and 𝑛 have a factor of 2 in common. This is a 

contradiction, hence result. 

 

f) Prove that the set of primes is infinite. 

Proof Assume the set of primes is finite and that there are 𝑛 primes 

   𝑝1, 𝑝2, 𝑝3, 𝑝4, … 𝑝𝑛 

  Consider 𝑁 = 𝑝1 × 𝑝2 × 𝑝3 × 𝑝4 × … × 𝑝𝑛 

  The next number after 𝑁 is 𝑁 + 1 

  𝑁 + 1 = 𝑝1 × 𝑝2 × 𝑝3 × 𝑝4 × … × 𝑝𝑛 + 1 

 𝑁 + 1 = 𝑝1𝑘 + 1 so 𝑁 + 1 is not divisible by 𝑝1. 

 𝑁 + 1 = 𝑝2𝑘 + 1 so 𝑁 + 1 is not divisible by 𝑝2. 

  Similarly 𝑁 + 1 is not divisible by 𝑝3, 𝑝4, … 𝑝𝑛. 

  So 𝑁 + 1 must be prime and it is greater than 𝑝𝑛.  

This is a contradiction, hence result. 
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Exercise 6: Use proof by contradiction to prove these results 

a)  For 𝑛 ∈ ℕ, if 5𝑛 is even then 𝑛 is even. 

 

b)  For 𝑛 ∈ ℕ, if 3𝑛 is odd then 𝑛 is odd. 

 

c)  For 𝑛 ∈ ℕ, if 𝑛2 is odd then 𝑛 is odd. 

 

d)  For 𝑛 ∈ ℕ, if 𝑛3 is even then 𝑛 is even. 

 

e)  For 𝑛 ∈ ℕ, if 3 divides 𝑛2 then 3 divides 𝑛. 

 

f)      √3 is irrational. 

 

g)  For 𝑥, 𝑦 ∈ ℝ, if 𝑥 + 𝑦 is irrational then at least one of 𝑥 and 𝑦 is                

     irrational. 

 

h)  That if 𝑥 and 𝑦 are integers such that 𝑥 + 𝑦 is odd, then one of them   

     must be odd and one must be even 

  

i)  That if 𝑥 and 𝑦 are real numbers such that 𝑥 + 𝑦 is irrational, then          

       at least one of 𝑥, 𝑦 is irrational 

 

j)  That if 𝑚 and 𝑛 are integers such that 𝑚𝑛2 is even, then at least 

       one of 𝑚 or 𝑛 is even 

  

k)  That if sin 𝜃 ≠ 0, then 𝜃 ≠ 𝑘𝜋 for any integer 𝑘 
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Proof by Contrapositive 
 

1 Prove that if 𝑥 and 𝑦 are integers and 𝑥𝑦 = 100, then either 𝑥 ≤ 10 

or 𝑦 ≤ 10. 

 𝑝: 𝑥 and 𝑦 are integers and 𝑥𝑦 = 100            

                𝑞: either 𝑥 ≤ 10 or 𝑦 ≤ 10 

      −𝑝: 𝑥 and 𝑦 are integers and 𝑥𝑦 ≠ 100 

           −𝑞: 𝑥 > 10 and 𝑦 > 10 

  Proof by contradiction requires us to show −𝑞 ⇒ −𝑝 

  𝑥 > 10 and 𝑦 > 10 

           ⇒    𝑥𝑦 > 100    

           ⇒    𝑥𝑦 ≠ 100    

           The contrapositive is true and hence the statement is true. 

 

2 Prove that if 7 is a factor of 𝑛2 then 7 is a factor 𝑛. 

 𝑝: 7 is a factor of 𝑛2        

                𝑞: 7 is a factor 𝑛 

      −𝑝: 7 is not a factor of 𝑛2 

           −𝑞: 7 is not a factor 𝑛 

  Proof by contradiction requires us to show −𝑞 ⇒ −𝑝 

  7 is not a factor 𝑛 

           ⇒    𝑛 = 7𝑚 + 𝑡 for some integers 𝑚 and 𝑡    

           ⇒    𝑛2 = (7𝑚 + 𝑡)2 

                         = 49𝑚2 + 14𝑚𝑡 + 𝑡2 

                         = 7(7𝑚2 + 2𝑚𝑡) + 𝑡2 

           ⇒    𝑛2 = 7𝑘 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 

           ⇒    7 is not a factor of 𝑛2 

           The contrapositive is true and hence the statement is true. 
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Exercise 7: Prove, using the contrapositive. 

a)  That if 𝑥 and 𝑦 are integers and 𝑥𝑦 is odd, then both 𝑥 and 𝑦 are    

odd                         

 

b)  That every prime number greater than 3 is of the form 6𝑛 ± 1,                  

        where 𝑛 is a positive integer 

 

c)  That if 𝑛 is a natural number such that 𝑛2 is even, then 𝑛 is even. 
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N7 Number Theory GPS 1.4 
 

The Fundamental Theorem of Arithmetic states that any integer, 𝑛 > 1, 

can be expressed uniquely as a product of prime numbers 

i.e. 6=2x3,  21=3x7,  36=2x2x3x3 etc 

 

Example: Express 430 as a product of its prime number 

 430=2x215 

 430=2x5x43 

 

Exercise 5: Express the following numbers as a product of primes 

a) 490  b) 1125 c) 2728   

 

The Division Algorithm 
 

If 𝑎 is a non-negative integer and 𝑏 a positive integer, then there exists 

unique non-negative integers 𝑞 and 𝑟 such that 

 𝑎 = 𝑏𝑞 + 𝑟      and  0 ≤ 𝑟 < 𝑏 

 

Proof On the real number line, the integers 𝑎, 𝑎 − 𝑏, 𝑎 − 2𝑏, 𝑎 − 3𝑏, .. 

form a decreasing sequence of integers. 

 Since only finitely many of these are ≥ 0, there is a unique 

integer 𝑞 ≥ 0 for which  

   𝑎 − (𝑞 + 1)𝑏 < 0 ≤ 𝑎 − 𝑏𝑞 

 and so                 0 ≤ 𝑎 − 𝑏𝑞 < 𝑏.       

 If we write 𝑟 = 𝑎 − 𝑏𝑞, then 𝑎 = 𝑏𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑏. 

 Thus we have found non-negative integers 𝑞 and 𝑟 for which  

    𝑎 = 𝑏𝑞 + 𝑟      and  0 ≤ 𝑟 < 𝑏  both hold. 

 

  To show that 𝑞 and 𝑟 are unique, suppose that  

   𝑎 = 𝑏𝑞1 + 𝑟1      and  0 ≤ 𝑟1 < 𝑏. 

  Then 𝑟1 = 𝑎 − 𝑏𝑞1 and 0 ≤ 𝑎 − 𝑏𝑞1 < 𝑏. 
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It follows that 𝑎 − (𝑞1 + 1)𝑏 < 0 ≤ 𝑎 − 𝑏𝑞1 so that 𝑞1 is the 

integer determined above and 𝑟1 = 𝑎 − 𝑏𝑞 = 𝑟. 

Thus the theorem is proved. 

 

Examples 

1 𝑎 = 193  and   𝑏 = 17 

 193 = 11.17 + 6            𝑞 = 11, 𝑟 = 6 
 

2 𝑎 = 581  and   𝑏 = 23 

 581 = 25.23 + 6            𝑞 = 25, 𝑟 = 6 

 

Exercise 2: Use the division identity for the following 

1 𝑎 = 75  and   𝑏 = 12 

2 𝑎 = 327  and   𝑏 = 13 

3 𝑎 = 392  and   𝑏 = 19 

 

If 𝑟 = 0 then we say that 𝑏 is a divisor of 𝑎. 

The notation used is 𝑏|𝑎 which means 𝑏 is a divisor of 𝑎. 

 

 

Euclidean Algorithm 
 

The Euclidean Algorithm is used to find the greatest common divisor 

(G.C.D.) or two or more integers where this cannot be done simply. 

 

For integers 𝑎 and 𝑏,  𝑎 = 𝑏𝑞1 + 𝑟1 and 0 ≤ 𝑟1 < 𝑏 

     𝑏 = 𝑟1𝑞2 + 𝑟2 and 0 ≤ 𝑟2 < 𝑟1 

     𝑟1 = 𝑟2𝑞3 + 𝑟3 and 0 ≤ 𝑟3 < 𝑟2 

 and so on until  𝑟𝑛−2 = 𝑟𝑛−1𝑞𝑛 + 𝑟𝑛 and 0 ≤ 𝑟𝑛−1 < 𝑟𝑛−1 

     𝑟𝑛−1 = 𝑟𝑛𝑞𝑛+1 + 0  i.e. 𝑟 eventually becomes 0 

 

To find the G.C.D. for small numbers, you use factorisation as follows. 
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Example: Find the G.C.D. of 15 and 24 

 15=3x5 and  24=23x3 

 So the G.C.D. of 15 and 24 is 3 

 

Notation (15,24)=3 means the G.C.D. if 15 and 24 is 3 

 

To find the G.C.D. for large numbers, use the Euclidean Algorithm. 

 

Example: Find the Euclidean Algorithm to find the G.C.D. of (1147,851) 

Use repeated application of the division identity until 𝑟 = 0. 

The last non-zero remainder is the G.C.D. 

  1147 = 1x851 + 296 

    851 = 2x296 + 259 

      296 = 1x259 + 37 

     259 = 7 x 37 + 0 

  Hence (1147,851) = 37 

 

Exercise 3: 

1 Find the G.C.D. of 

 a) (15,27)   b) (16,42)   c) (72,108) 

 d)  (111,481)  e)  (451, 168)  f)  (679, 388) 

 g)  (756, 714)  h)  (1470, 1330) i)  (1498, 535) 

 

2 Use the Euclidean Algorithm to find the G.C.D. of 

 a) (1219,901)  b) (4277,2821)  c) (5213,2867) 

 d)  (2172, 1267) e)  (1692, 684)  f)  (34034, 51051) 
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Expressing the G.C.D. of Two Positive Integers as a 

Linear Combination of the Two Integers 
 

Having found the G.C.D. of two positive integers 𝑎 and 𝑏, it is possible, by 

working backwards, to express the divisor (𝑑) in terms of the two integers 

in the form of a linear combination 

  𝑑 = 𝑥𝑎 + 𝑦𝑏  where 𝑥 and 𝑦 are integers. 

 

 

Example 

Use the Euclidean Algorithm to find the G.C.D. of 1147 and 851 hence 

find the integers 𝑥 and 𝑦 to write this G.C.D. in the form 𝑥. 1147 + 𝑦. 851 

1147 = 1x851 + 296  (1) 

    851 = 2x296 + 259  (2) 

      296 = 1x259 + 37  (3) 

     259 = 7 x 37 + 0 

  Hence (1147,851) = 37 

 

  From (3) 37 = 296 – 1x259 

  From (2)  37 = 296 – 1x(851 – 2x296) 

         = 296 – 1x851 + 2x296 

         = 3x296 – 1x851 

  From (1)  37 = 3x(1147 – 1x851) – 1x851 

         = 3x1147 – 3x851 –1x851       

    37 = 3x1147 – 4x851  

  𝑥 = 3  and 𝑦 = −4 
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Exercise 4: 

 

1 a) Use the Euclidean Algorithm to find the G.C.D. of 345 and 285. 

 b) Hence find the integers 𝑥 and 𝑦 to write this G.C.D. in the form 

     345x+285y 

2 Calculate (583, 318) and express it in the form 583s + 318t,  

where 𝑠, 𝑡 ∈ 𝑍 

  

3 a)  Evaluate d = (1292, 1558) 

 b)  hence express d in the form 1292s + 1558y where 𝑠, 𝑡 ∈ 𝑍 

 

4 a) Use the Euclidean Algorithm to find the G.C.D. of 7293 and 798. 

 b) Hence find the integers 𝑥 and 𝑦 to write this G.C.D. in the form 

     7293x+798y 

 

5) Find a and b such that 248a + 261b = 1,   𝑎, 𝑏 ∈ 𝑍 

 

6) 5612x + 540y = 4.  Assuming x and y are integers, find their values. 

 

 

 

Expressing Base 10 Integers in Other Bases 
 

Our number system works on a base of 10. We have 10 symbols 0, 1, 2, 

3, 4, 5, 6, 7, 8, 9, the next number requires going up to the next column  

(the tens column). Other common bases are base 2 (binary) and base 16  

(hexadecimal). You have to be able to write numbers in other bases. 

 

Notation 352ten means 352 in the base 10 
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Examples 

1 Write 235ten in the base 6. 

  235 = 6x39 + 1 

   39 = 6x6 + 3 

     6 = 6x1 + 0 

     1 = 6x0 +1  

  Reading the remainders in reverse gives 1031six 

 Or 235 = 6x39 + 1 

       = 6x(6x6 + 3) + 1 

       = 6x6x6 + 3x6 + 1 

       = 6x6x6 + 0x6x6 + 3x6 + 1 

       = 63 + 0x62 + 3x6 +1 

       =1031six 

  

2 Write 423ten in the base 8. 

  423 = 8x52 + 7 

   52 = 8x6 + 4 

     6 = 8x0 + 6 

  Reading the remainders in reverse gives 647eight 

 Or 423 = 8x52 + 7 

       = 8x(8x6+4) + 7 

       = 8x8x6 + 4x8 + 7 

       = 6x82 + 4x8 +7 

       =647eight 

 

Exercise 5 

1  a)  Express 81 to base 2  b)  Express 579 to base 5. 

c)  Express 1064 to base 7. d)  Express 15287 to base 9. 

e)  Express 333 to base 4. f)  Express 1727 to base 12. 

 

2 Express in base 10: 

 a)  12347  b)  7778  c)  1101102 d)  A81B12 

 

3 Express   a)   6267 in base 5 b)   4016 in base 7 

   c)   CC512 in base 6 
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Answers 

Properties of Function 

Ex1: 1 x=2  2 x=-3  x=1  3 x=-1  x=3  4 x=2  5 x=-2 x=2  6 x=-2 x=1  7 x=0  8 x=1  9 none  10 none 

 

 

11 x=1  12 x=-1 x=1 

 

Ex2: 1 y=0 2 y=0  3 y=0         4 y=1 5 y=-1 6 y=1 

7 y=x+3          8 y=x+1         9 y=x           10 y=0              11 y=x+1        12 y=2 

 
Ex3: 1 2  3  4 

 

 

5                              6  7   8 

 

 

 

Ex4: 1)  Proof     2)   Point of Inflexion at x=½  ( ½,-½)    3) Point of Inflexion at (-2,4); concave 

down before x= -2, concave up after x= -2     4) Point of Inflexion at (-2.52,0); concave up before 

x= -2.52, concave down after x=-2.52 

 

Ex5: 1a) 
1

2
𝑥  b) 2-x  c) 

2

𝑥
  d) log2x  e) 

1

2
(1 − 𝑥)  f) ex+2    2a) 

𝜋

3
  b) 

𝜋

6
  c) 

𝜋

4
  d) 

𝜋

6
  e) 

5𝜋

6
  f) 

𝜋

6
 

3a) b) c)  

   

 

 

d) e) f) 

 

 

4a) b) 

 

 

 

x=2 

-2 

x=1 

y=1 
2 

 2 

y=1 

x=2 x=-3 

 -2 1 

(−
1

2
,

9

25
)  

5 

(-3,-4) 

(1,4) 

(1,
1

4
)  

(−3, −
1

4
)  

x=-1 x=1 

y=2 

(-3,-4) 
(3, −

1

4
)  

 1 

x=-1 x=-9 

y=1 

x=-1 

y=1 

x=2  x=1 

(
5

3
, 11)  

−
3

2
 

(2,3) 

(5,1) 

(-6,0) 

(-1,1) 

(-4,3) 4 
(2,3) 

(-1,5) 

(-3,0) 

(1,3) 

(2,-1) 

(-1,-3) 
(-3,0) 

(2,1) 

(-1,6) 

(-3,0) 

4 

  2 

2 

(-2,1) 

(3,0) 
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c) d) 

 

 

 

f) g) 

 

 

 

5 a) neither b) even c) odd  d) odd  e) odd  f) odd   g)odd 

h)  even    i) odd     j)  even      k)  neither    l) neither  

 

Motion and Optimisation 

Ex1 1)a)3m  b)3m  c) 2m/s  d) 2m/s2  2)a) 88m/s, 166m/s  b)66m/s2, 90m/s2  c) 127m/s  d) 78m/s2 

3)a)½m/s2  b) 2½m/s2  4) a) 0m/s, 18m/s2  b) -27m/s, -36m/s2 

Ex2 a) min at (1,1)  b) min at (
1

𝑒
, −

1

𝑒
)  c) max at (1,

1

𝑒
)  d) max (

𝜋

3
,

3√3

4
) PoI (𝜋, 0) min (

5𝜋

3
,

−3√3

4
) 

Ex3 1) see graphs  2) max is 1  3) max is 2, min is -4, f’(x) does not exist (0,-2), (2,2), (4,0), (7,-3)  

Ex4 1)a)proof  b) 
8

3
cm  2)a)proof  b)16cm  3)a)proof b)

32𝜋

27
cm3  4)a)+b) proof c)

8𝜋

3
, A=200(1+√2)  

Ex5: 1a) 12𝜋  b) 8𝜋  c) 
2𝜋

3
  d) 

19𝜋

3
  e) 

𝜋

30
  f) 18𝜋  g) 64𝜋  h) 

1

2
𝜋2    

2a) 8𝜋  b) 
𝜋

5
  c) 

𝜋

6
  d) 32𝜋  e) 

7𝜋

48
  f) 

56𝜋

15
  g) 

1

2
(𝑒10 − 𝑒6)𝜋   

 

Summation and Proof by Induction 

Ex1 1a) 12 + 22 + 32 + 42 + 52  b) 1+3+5+7+9+11+13+15+17  c) 
2520

1
+

2520

2
+

2520

3
+ ⋯

2520

10
 

2a) 

∑ 𝑘

50

1

 

b) 

∑ 5𝑘

6

1

 

c) 

∑ 2𝑘 + 1

6

1

 

 
 

    
Ex2 a) 55  b) 420  c) 96 d)1150  e) 155 

Ex3 parts of proofs are shown below  

a) 1+3+5+...+[2(k+1)+1]=k2+2k+1 
                                       = (k+1)2 

b) 5+7+...+(2k-1)+[2(k+1)-1] 
  =(k-2)(k+2)+2k+1 
  =k2-4+2k+1 
  =(k-1)(k+3) 
  =(k+1-2)(k+1+2) 
 

c)  2k>k 
   2x2k>2k 
   2x2k>k+k 
   2k+1>k+1   since k>1 

d) 1+2+4+...+2k+2k+1 
   =2k+1-1+2k+1 
   =2x2k+1-1 
   =2k+2-1 
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e) 
1

1×2
+ ⋯ +

1

𝑘(𝑘+1)
+

1

(𝑘+1)(𝑘+2)
 

  =
𝑘

𝑘+1
+

1

(𝑘+1)(𝑘+2)
 

  =
𝑘(𝑘+2)+1

(𝑘+1)(𝑘+2)
 

 
 

f) 32k-1=8t     for  tϵN 
    32(k+1)-1=32k+2-1 
                =9x32k-9+8 
                =9(32k-1)+8 
                =9x8t+8 
                =8(9t+1) 

g) 13+23+33+...+k3+(k+1)3 
   =¼k2(k+1)2+(k+1)3 
   =¼(k+1)2[k2+4(k+1)] 
   =¼(k+1)2(k+2)2 

h) 3k>k3 
  3x3k>3k3=k3+2k3=k3+k2x2k        since k≥4 
         >k3+8k2 = k3+3k2+5k2= k3+3k2+kx5k 
         > k3+3k2+20k= k3+3k2+3k+17k  
         > k3+3k2+3k+1 
    3k+1>(k+1)3 

 
i) See Nelson 2 p99 

 
j) See Nelson 2 p99 
 
 

Other Forms of Proof 

Ex1 1) c  2) d   

3a) For some real 𝑥, 𝑥2 is not positive   

b) No pupils find mathematics difficult   

c) Some dogs like cats 

d) There is no positive integer 𝑥 such that 𝑥 + 3 > 0   

e) Some parallelogram do not have half turn symmetry   

f) Some school boys lies   

g) Some numbers with a zero in the units place are not divisible by five.  

h) Some numbers of the form 2𝑛 − 1, (𝑛 an integer), are not prime. 

 

Ex2 1a) If a number is divisible by 5, it ends in zero (e.g. 15) 

b) If a number is odd, it is a prime number greater than 2  (e.g. 9) 

c) If the diagonals of a quadrilateral intersect at right angles, the quadrilateral is a square  (e.g. 

rhombus) 

d) If 𝑥2 = 9, 𝑥 = 3  (e.g. -3) 

e) If the sum of two numbers is even then the numbers are odd  (e.g. 4 and 6) 

f) If the product of two numbers is even then the numbers are even (e.g. 6 and 5) 

 

Ex3 1) necessary  2) neither  3a) necessary  b) none  c) sufficient  d) necessary and sufficient   

e) sufficient  f) necessary and sufficient  g) neither  h) sufficient  

 

Ex4 1a) n=82  b) a=-4, b=1  c) a=3, b=1, c=-2  d) a=1, b=-3  2a) 𝑥 =
1

2
  b) a=3, b=2, c=-2, d=-3 

c) a=-6, b=-3  d) a=5, b=2, x=0  Other examples are possible! 
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Ex5 1a) If a number is divisible by by 5, then it ends in 0. False e.g. 15 

b) If n is an odd number greater than 2, then it is prime. False e.g. 15 

c) 𝑥2 = 9 ⇒ 𝑥 = 3. False e.g. x=-3   

d) If a+b is even then a and b are odd. False e.g. 2 and 4 

e) If k is a multiple of 3 then 3 is a root of x2+x-k=0. False e.g. x2+x-3=0 

2a) yes  b) yes  c) no  d) yes  e) yes  f) no 

Ex6  

(a) If 5n is even then n is even, nN 

 Assume that 5n is even and n is odd. 

 Then  n = 2k+1,   kN 

  n = 2k+1  => 5n = 5(2k+1) 

             = 10k+5 

    = 2(5k+2) +1 

 5n is odd 

This is a contradiction, as 5n was assumed to be even.  Therefore the original conjecture is true. 

 

(b) If 3n is odd then n is odd, nN 

 Assume that 3n is odd and n is even.    

 Then  n = 2k,   kN 

  n = 2k  =>      3n = 3(2k) 

             = 6k 

    = 2(3k) 

 3n is even 

This is a contradiction, as 3n was assumed to be odd  Therefore the original conjecture is true. 

 

(c) If n2 is odd then n is odd, nN 

 Assume that n2 is odd and n is even.    

 Then  n = 2k,   kN 

  n = 2k  =>      n2 = (2k)2 

             = 4k2 

    = 2(2k2) 

 n2 is even 

This is a contradiction, as n2 was assumed to be odd  Therefore the original conjecture is true. 

 

(d) If n3 is even then n is even, nN 

 Assume that n3 is even and n is odd. 

 Then  n = 2k+1,   kN 

  n = 2k+1  => n3 = (2k+1)3 

             = 8k3+ 12k2 + 6k+1 

    = 2(4k3+6k2 + 3k) +1 

 n3 is odd 

This is a contradiction, as n3 was assumed to be even.  Therefore the original conjecture is true. 
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(e) If 3 divides n2 then 3 divides n, nN 

 Assume that 3 divides n2 and 3 does not divide n. 

Then  n = 3k+1 or n=3k+2,   kN 

  n = 3k+1  => n2 = (3k+1) 2  n = 3k+2  => n2  = (3k+2) 2 

             = 9k2 + 6k+1    = 9k2 + 12k+4 

    = 3(3k2 + 2k) +1    = 3(3k2 + 4k+1) +1 

=> n2 is not divisible by 3  => n2 is not divisible by 3 

 

This is a contradiction, as n2 was assumed to be divisible by 3.  Therefore the original conjecture 

is true. 

 

(f) √3 is irrational 

 Assume √3 is rational, i.e. √3 =
𝑝

𝑞
 where p and q are integers with no common factors. 

  √3 =
𝑝

𝑞
 

  3 =
𝑝2

𝑞2 

  3q2=p2  => p2 is a multiple of 3   

   => p is a multiple of 3    i.e. p =3m,  mZ 

  3 =
𝑝2

𝑞2 

  3 =
(3𝑚)2

𝑞2  

  3q2=9p2  

   q2=3p2  => q2 is a multiple of 3   

   => q is a multiple of 3    i.e. q =3n,  mZ 

Thus, 3|q and 3|q, but p and q are asumed to have no common factors.  This is a contradiction 

and so the original conjecture is true. 

 

 

(g) If x + y is irrational then at least one of x and y is irrational. 

 Assume that x+y is irrational and that x and y are both rational. 

 Then 𝑥 =
𝑎

𝑏
 and 𝑦 =

𝑐

𝑑
  ;     a, b, c, dZ 

   So x+y = 
𝑎

𝑏
+

𝑐

𝑑
 

 

   = 
𝑎𝑑+𝑏𝑐

𝑏𝑑
 

 

 As ad+bc and bd have no common factors, then x+y is rational. 

 

This is a contradiction, x+y was assumed to be irrational. Therefore the original conjecture is true. 
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(h) If x and y are integers such that x + y is odd, then one of them must be odd and one must 

be even. 

 

 Assume that x + y is odd and x and y are both odd or even. 

 If x and y are both even, x = 2m and y = 2n,   m,nZ 

    So x+ y = 2m + 2n 

     = 2(m+n) 

     => x + y is even 

 If x and y are both odd, x = 2m+1 and y = 2n+1,   m,nZ 

    So x+ y = 2m+1 + 2n+1 

     = 2(m+n+1) 

     => x + y is even 

 In both cases, x+y is shown to be even.   

This is a contradiction, as x + y is assumed to be odd. 

Therefore the original conjecture is true. 

 

(i) same as (g) 

 

(j) If m and n are integers such that mn2 is even then at least one of m or n is even. 

 

 Assume that mn2 is even and both m and n are odd. 

 Then  m=2p+1 and n=2q+1,   p,qZ 

  So mn2 = (2p+1)(2q+1)2 

   =(2p+1)(4q2+4q+1) 

   = 8pq2+8pq+2p+4q2+4q+1 

   = 2(4pq2+4pq+p+2q2+2q)+1 

=> mn2  is odd. 

This is a contradiction as mn2  was assumed to be even. Therefore the original conjecture is true. 

 

(k) If 𝑠𝑖𝑛𝜃 ≠ 0 then 𝜃 ≠ 𝑘𝜋 for any integer k. 

 Assume 𝑠𝑖𝑛𝜃 ≠ 0 and 𝜃 = 𝑘𝜋 

 Then 𝑠𝑖𝑛𝜃 = 𝑠𝑖𝑛𝑘𝜋 

       =   0 

 This is a contradiction as it was assumed 𝑠𝑖𝑛𝜃 ≠ 0.   

Therefore the original conjecture is true. 
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Ex7  

(a) If x and y are integers and xy is odd, then both x and y are odd. 

 

p: xy is odd   ~p:  xy is even 

q: both x and y are odd ~q: at least one of x and y is even 

 

 Contrapositive conjecture:  (~q => ~p) 

 If at least one of x and y is even, then xy is even 

 

 As either x or y is even, let x = 2k,  kZ 

  x = 2k  =>  xy = 2kx 

    = 2(kx) 

   =>  xy is even   i.e if x is even, xy is even 

So the contrapositive conjecture is true, therefore the original conjecture is also true. 

 

 

(b) Every prime number greater than 3 is of the form 6n±1, nW 

 

 p: given a prime number greater than 3  

~p: given a composite number greater than 3 

q: the number is of the form 6n±1 

~q: the number is not of the form 6n±1 

 

 Contrapositive conjecture:  (~q => ~p) 

If a number is not of the form 6n±1, it is a composite number (>3) 

 

Let m be a number is not of the form 6n±1, 

So m= 6n or m=6n+2 or m=6n+3 or m=6n+4   

Case 1:       m = 6n 

 m is composite (6 is a factor) 

Case 2:       m = 6n+2 

    =  2(3n+1) 

 m is composite (2 is a factor) 

Case 3:       m = 6n+3 

    =  3(2n+1) 

 m is composite (3 is a factor) 

Case 4:       m = 6n+4 

    =  2(3n+2) 

 m is composite (2 is a factor) 

In all cases, m is composite, so the contrapositive conjecture is true, therefore the original 

conjecture is also true. 

 

(c) If n is a natural number such that n2 is even, then n is even. 

 

p: n2 is even   ~p:  n2 is odd 

q: n is even   ~q: n is odd 
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Contrapositive conjecture:  (~q => ~p) 

If n is odd then n2 is odd 

 

Let n = 2k+1,  kZ  

n = 2k+1 => n2 = (2k+1) 2 

     = 4k2 + 4k + 1 

     = 2(2k2 + 4k)+1 

     => n2 is odd    i.e  if n is odd then n2 is odd   

So the contrapositive conjecture is true, therefore the original conjecture is also true. 

Number Theory 

Ex1 a) 2x5x72   b) 32x53   c) 23x11x31 

Ex2 1) 75=6.12+3  2) 327=25.15+2  3) 392=20.19+12 

Ex3 1a) 3  b) 2  c) 36  d)  37  e)  1  f)  97  g)  42  h)  70  i)  107 

       2a) 53  b) 91  c) 1  d)  181  e)  36  f)  17017 

Ex4 1a) 15  b) x = 5, y = -6   2) 53;  s =2, t = -1   3)  a) 38 b)s = 5, t = -6 

4a) 3  b) x=-115 y=1051   5)  a=20, b = -19   6)  x = -28, y=291 

Ex5 1 a) 10100012  b) 43045  c) 30507  d) 228659  e) 110314   f)  BBB12 

2a)  466  b) 511  c) 54  d)  18455    3a) 322245    b)  2657    c)  111256 

 

 

 


