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N7 Partial Fractions MAC 1.1

. . 2 3 4 . .
Given the expression — + — + we can express it as a single
x—1 x+1 2x—-3

fraction.
2 3 4 2(x+1)(2x-3)+3(x—1)(2x—-3)+4(x—1)(x+1)
+ + =
x—1 x+1 2x-3 (x—1)(x+1)(2x-3)
_ 14x2-17x-1
T (x—1)(x+1)(2x-3)
2_ 17—
Wx —17x-1 s called a rational function.
(x—=1)(x+1)(2x-3)
2 3

4 . . .
+ are called the corresponding partial fractions.
x—1 x+1 2x-3

The focus of this chapter is to find the partial fractions when given the

rational function. There are a number of different types to consider.

In general terms we shall refer to the rational function as %, where f(x)

and g(x) are polynomial functions.

Before we begin the process, the degree of f(x) must be lower than the
degree of g(x). This may require a long division to be carried out before
the partial fractions process is completed.

Long Division
The process for long division of polynomials is the same as the process
for numbers

Example
x3+(x?-4) X
x24+0x-4 | x3+0x>+0x+0
x3 + 0x? - 4x
4x
Therefore —— = x + —*_.
x<—4 x“—4

Exercise 1: By using long division write the following rational fractions in
the same way the example above.

a) x3+43x2 b) 5x%—4x3+x2 C) xC—x*+x%—x-1
x2+42 x2—4 x2(x-1)




Partial Fractions Type 1
In this type of partial fractions the degree of f(x) is less than g(x) and the
factors of g(x) are linear and different.

Example
Find the partial fractions for
a) x+16
2x%2+x-6
x+16 x+16 . . .
S~ Zr3) D) by factorising the denominator.
xX+16 A B
Let (2x—3)(x+2)  2x-3 T x+2
Multiply both sides by (2x — 3)(x + 2) to remove the denominator.
x+6=A(x+2)+B(2x—-3)
Substitute x == =24 = A=5
Substitute x =—-2 14=-7B = B=-2
Hence x+16 5 . 2
2x2+x—-6  2x—3  x+2
2x2%+4x
b) (x2-1)(2x+1)
2x%+4x 2x%+4x
(x2-1)(2x+1)  (x=1)(x+1)(2x+1)
Let 2x%+4x A n B C

(x—-1D)(x+1)(2x+1)  x-1  x+1  2x+1

Multiply both sides by (x — 1)(x + 1)(2x + 1)
2x2 +4x =Alx+1DR2x+ 1D +Bx-1D2x+ 1D+ Clx—1D(x+1)

Substitute x = 1 6=6A = A=1
Substitute x=-1 —-2=2B = B=-1
Substitute x = —~ —3>=_3¢ = =2
2 2 4
2x%+4x 1 1 2
Hence —

(x2-1)(2x+1) x-1 x+1 2x+1



Exercise 2:
1) Find the partial fractions for the following rational functions

4x-9 3—-8x x+24 2(3x+4)
a) (x—2)(x-3) ) x(1-x) ) x2—x—12 ) x2+4x
2) Divide out first and then find partial fractions for
x%2+6x—13 x3
) x2+x—12 )(x+4)(x—1)

Partial Fractions Type 2
In this type of partial fractions the degree of f(x) is less than g(x) and the
factors of g(x) are linear and repeated.

: : : -8x2+4+14x-15
Example: Find the partial fractions for ————
(2x-1)%2(x+2)
-8x%+14x-15 A B C

Let 2x-1)2(x+2) 2x-1 (2x—1)2 T xX+2

Multiply both sides by (2x — 1)2(x + 2)
—8x2+14x —15=A4AQx —1D(x+2)+ B(x +2) + C(2x — 1)?
Substitute x=- —10=-B = B=—4

Substitute x =-2 —-75=25C = (=-3
We have used all the values of x from the factors, this will happen when
there are repeated factors. Pick any other value for x and use the values
for B and C already found.

Substitute x =0 —15=-244+2B+C
—15=-2A+4+8—-3 = A=2
—8x2%2+4+14x-15 2 4 3
Hence = — —

(2x—-1)2(x+2) 2x-1 (2x-1)2 x+2

Exercise 3
1) Find partial fractions for the following rational functions:
3x2+1 3x2+42 x2-2x+10 7x2-48x+75
) x(x+1)2 ) x(x—1)2 ) (x+2)(x—1)2 ) (2x-3)(x—4)2

2) Express this improper rational function as the sum of a polynomial

xC—x*+x%—x—-1

x2(x—1)

and partial fractions



Partial Fractions Type 3
In this type of partial fractions the degree of f(x) is less than g(x) where
g(x) has a linear factor and an irreducible quadratic.

5x—7

Example: Find the partial fractions for GiHEiD

5x—7 A Bx+C
Let .= .
(x+3)(x%+2) x+3  x%+42

Multiply both sides by (x + 3)(x? + 2)
5x—7=Ax%*+2)+ (Bx + C)(x + 3)
Substitute x =—-3 —-22=114 = A=-2
We have used all the factors of x from the factors. Pick any other values
of x that you have not used.
Substitute x=0 —7=24+4+3C = -7=-4+4+3C = C=-1

Substitute x=1 —2=34+4(B+C) > —2=4B—10 = B=2
5x—7 2 2x—1
(x+3)(x2+2)  x+3  x2+2

Hence

Exercise 4 Find the partial fractions for

a) 8x+8 b) 7x%+4x c) 7x%2+17x+80
(x—2)(x2%2+4) (x+2)(x2%2+1) (x+5)(x2+49)
x3+2x%2+61 x*+1 x?
) (x+3)%2(x%2+4) e) x(x2%+42) f) (x—1)2

Exercise 5 Find the partial fractions for:

a) 7 ) 10+6x—3x2 c) 2x-3
(2x=3)(x+2) (2x—1)(x+3)2 (x%2-1)
3x%2-1 2x2%-7 2x3+11
d) (2x-1)2(x-1) e) (x—3)(2x+5) f) (x2+4)(x-3)

) 3x+7 ) 3x3+6x2-11x+1 i) x3+2x%+61
9 (1+2x)(x2—x+2) (1+x)3(x-2) (x+3)%2(x%2+4)




N7 Binomial Theorem and AAC 1.1
Complex Numbers

Pascal’s Triangle
The expansions of (x+y)" for n=1,2,3,4,5 are shown below. The
coefficients form an array known as Pascal’s Triangle.

(x+y)! = x+y 1 1

(X+Y)? = x2+2Xy+Yy? 1 2 1
(X+Y)® = x3+3x2y+3xy?+y? 1 3 3 1
(x+y)* = xH+4x3y+6x2y>+4xy3+y? 1 4 6 4 1

(X+y)® = x>+5x4y+10x3y?+10x%y3+5xy*+y> 1 5 10 10 5 1

Note:

The symmetry on Pascal’s Triangle

The next line of the coefficients can be deduced from the previous line.
As the powers of x in the expansion decrease by one, the powers of y
increase by one.

We can now write down the expansion of (x+y)®. The next line of Pascal’s
Triangle will give the coefficients: 1 6 15 20 15 6 1.
(X+y)® = x8+6x°y+15x4y?+20x3y3+15x2y*+6xy°+Yy°

1 5
Examples: Expand (Za - Z)
The coefficientsare 1 5 10 10 5 1, from Pascal’s Triangle. Replace the

x with 2a and the y with —% to get
5 2 3

(Za — %) = (2a)° +5QRa)* (— %) +10(2a)? (— %) +10(2a)? (— %)

saan () + ()

=32a° ———+—- -+ -1




Exercise 1. Expand

a) (x+5) ) @+2)* ¢ (M=-3)° q) (G-Yy)*

e) (2x+3)° f @Bp+d)* g @2x+Yy)° h) (2k-5)°

1 3
i) (Bx—2y)* i) (x* +2)° k) (y®-2)* ) (x+—)

2 3 23 24 2 1 ’
a) Bx°=2)" ( X ‘;) ) (X ‘7)

The Factorial
n! (read as n factorial) is defined as:

n! = n(n-1)(n-2)(n-3)(n-4)...4x3x2x1 for neN.
Note that 0! =1

Notation
n choose r
n n n!
( ) = "C, = for neN and Osrsn
r ri(n-r)!

(Trl) calculates the number of ways of choosing r objects from n objects.

Example: Joe holds 5 playing cards, the 2, 3, 4, 5 and 6 of clubs.
How many ways does he have of putting down 2 cards?
List: 2,3 2,4 25 26 34 35 36 45 4,6 5,6 10ways
OR
5 5! 5! 5X 4 x 3!
2/ 21(5-=2)! 213! 2x1x3!
However, problems such as these are not part of the AH course.

8



Exercise 2;

1)  Find the values of a) (g) ) (170)

2) Find the values of (g) (i) (;) (g) (i) (g)

Compare these to Pascal’s Triangle.

3) Use the definition to show that a) (g):l b) (n) =n

It appears from the above exercise that Pascal’s triangle could be re-
written as

i (o)
i (o)

" )

H ) ¢ N ) I

From the symmetry of Pascal’s triangle we can see that:

@=6) ©=6) Q=0 Q=@ e

From the ability to produce the next line we can see that:

H+E)=6G) O+R=6) G+ =() e

(1) etc



Exercise 3:
1) Use the symmetry property to find to find another value of (7:)

equivalent to: a) (13) b) (3(5)) o) (z)

2) Prove this property i.e. show that (7:) = (n 71 r)

3) Use the process for finding the next line to write the following in the

orm ()2 () +(5): o (5)+(5)

4)  Prove this property i.e. show that (Z) + ( n ) = (

r+1 n+1)

r+1

You are required to know the results in questions 2 and 4.

The Binomial Theorem

This states that for x,yeR and neN
o= (e (s (esyt o (o ot ()

The General Term is (Z) X" Ty"

Examples:

1) Use the Binomial Theorem to expand (1-x)%.
(1-X)*=[1+(-x)]*

=(0)+ () 0+ () 07+ (o + (o
=1 - 4x + 6x2- 4x3 + x*
2) Use the Binomial Theorem to expand (x + i)m as far as the fourth
term.

(D)xe+ (D) @)+ ()= @) + ()= ()
= x16 + 16x1* + 120x1? + 560x1°
10



3) Use the Binomial Theorem to find an accurate value of 2.14

@+00* = ()2t + (¥ 22 x 01+ (¥ 22 x 0.2 + (¥ 2 x 0.7 + (}) 0.1%

0 1 2 3 4
=16+ 3.2+ 0.24 + 0.008 + 0.0001
= 19.4481

Similarly 1.9%= (2-0.1)* and this can be expanded to find an accurate
value of 13.0321.

Sigma Notation
The Binomial Theorem can be written as

ny ,_
)= 3, (1) 2Ty
Y isread as: “the sum of”.

Exercise 4:

1) Expand the following using the Binomial Expansion:
a) (3+x)° b) (5+2x)* ¢) (2-x)* d) (x+2y)°
e) (1+3x° ) (2x-3y)* ) (2x+ 3)5 h) (x?- 5)4

X X

2) Expand (3+x)° and use your expansion to find a) 3.1° b) 2.9°

3) Expand (2+x)’ in ascending powers of x up to x3.
Hence evaluate 2.17 correct to 6 significant figures.

4)  Use the Binomial Theorem to evaluate 1.01* correct to 5 decimal
places.

11



Looking for Individual Terms

Examples:

1)

2)

3)

n

Find the value of n for which (2

n!
21(n=2)! 55
nn-1)(n-2)(n-3)...3x2x1

=55
2x1x(n-2)(n—-3)..3x2x1
n(nz—l) _ 5t
n2—n-110=0
(n-11)(n+10)=0
n=11 or n=-10
But n is a whole number, so n=11.

) =s55.

: : : 2\°
Find the term in x” in (x + ;)
The general term is (2) xOTRx"HT

— (2) x99~ T

_ (9) T 927
T
The term in X’ occurs when 9-2r=7
r=1
: 9 1..7 7
The term is (1) 2'x’ = 18x

- _ . 4 2 3 9
Find the term independent of x in (gx — g)

(9N (4x2\0TT f—3x1\"

The general term is (r) (T) ( . )

- ()<

r/ 3 2

_ (N D 13

N (r) 39-r X 27 X
The term independent of x is given by 18-3r=0

r=6

3 _ 26
The termis (Z)%x(;) = 2268

12



4)  Find the sixth term in the expansion of (2x-3y)°.
9 9 9 8r_ 1
Term 1 (O) (2x) Term 2 (1) (2x)°(—=3y)" .....

Term 6 (g) (20*(=3y)% = == x 2*%x* x (=3)%y5 = —489888x*y°

Exercise 5:

1) Find the value of n for which a) (721) =21 Db) (g) =10
2) Find the term in x3 in (2x-3)°

3) Find the term independent of x for (xz + i)B

4)  Find the coefficient of x3 in the expansion of (3x-2)*?
5)  Find the coefficient of x° and the term independent of x in the

: 1 18
expansion of (; — x)

6) Find the fourth term in the expansion of (a-3x)° when written in
ascending powers of x.

7)  Find the coefficient of x?y* in the expansion of (X + 2y)6

8) Find the coefficient of x° in the expansion of (1 +3x°)*

9)  Find the coefficient of X2 in the expansion of (X+ X%)S

10) Find the coefficient of x*y3 in the expansion of (X—Y)’

11) Find the coefficient of x2y2 in the expansion of (2x—Yy)*
12) Find the coefficient of x8 in the expansion of 1+ X2)8

13) Find the coefficient of y° in the expansion of (y —%)5

14) Find the constant term in the expansion of (3x + %)12

a 1)4
15) Find the constant term in the expansion of (E ~ 3a

13



N7 Differentiation MAC 1.2

To complete this section well, you must know the purpose of differentiation, the
applications of differentiation and how to differentiate all the different types of
functions from Higher i.e. polynomials, trigonometric functions and composite
functions.

A

Differentiation from First Principles

An approximation of the gradient of the
tangent AC the curve at A can be found by
taking a second point B, on the curve and
calculating the gradient of the chord AB
instead.

If A is the point (x,f(x)) and B is the point (x+h,f(x+h)), where h is small,
we can calculate the gradient of the chord.

. = LGN _ et —f (0
AB X+h—x h

mas tends to a limit as h tends to zero.
The limit is denoted by f'(x), the derivative of f(x) and gives the gradient of
the tangent AC to the curve y=f(x) at A.

/ S f(x+h)—f(x)
f1(x) = lim —=——=

This is differentiation from first principles.

v

Example: Find the derivative from first principles of x.
f(x)=x>  f(x+h)=(x+h)?=x?+2xh+h?
/ S f(x+h)—f(x)
f1(x) = lim —=——=

x2%42xh+h%—x2

f'(x) = lim
/ _ 1:. 2xh+h?

f1Gx) = lim—

f'(x) =I111_r)r(1)2x+h

fl(x) =2x

Exercise 1: Differentiate the following functions from first principles:
a) f(x)=x3 b)  f(x)=x2+2x c) f(x) = 3x?+4x-5

14



Standard Derivatives

f(X) f'(x)

Xn an—l
(ax+b)" an(ax+b)"
Sinx Cosx
COSX -Sinx
sin(ax+b) acos(ax+b)
cos(ax+b) -sin(ax+h)

Exercise 2:
1  Differentiate the following functions with respect to x

K)

fx)=x3>—x*+5x—-6

fO) =Vx+ =

fO=5-%
() = (4x +5)?
fO) ===

f(x) = cos3x

b) f(x)=3x2+7—§

3 1

d f(x)=xz—xz2+x"

N f@=S+2
h) fo = (2x*—3)2

D @) ==
D f(x) =+sinx

1

2

2  Find the equation of the tangent of y = 3x? + 2x — 7 at x = 2.

3  Find the coordinates of the stationary points of the curve
y=x3-3x+2

New Trigonometric Functions

Secant: secO =
cos0
Cosecant: cosecO = —
sin@
Cotangent: cotf =

tané

Learn these
functions!




The Chain Rule

This process is for differentiating composite functions. Two versions are
shown below.

If y is a function of u, and u is a

function of x then y is a function ~ OR  [f(g(x))] = f'(g(x)) X g' (%)
of x L
' dx du’ dx

Example: Differentiate y = (x? + 3x — 5)°
Higher — Differentiate the outer function and multiply by the derivative of
the outer function.

Z—z = 5(x2 + 3x — 5)*(2x + 3)

AH — Identify the inner as u and write the outer function in terms of u.
y=u>andu=x%>+3x-5
Yooyt o243
du dx
dy _dy du
dx du dx
= 5u*(2x + 3)

% = 5(x2 + 3x — 5)*(2x = 3)
This more formal method is useful for more complicated functions but

otherwise use the original method.

Exercise 3
1 Differentiate the following functions using both routines shown above.
a) y=(x*+4x-5) b)) y=vx3+5 C)y=(1+2\/§)4

3
DY=7=

e) y = sin*x f) y =cos32x

2 Show that

d d
a) —secx = secxtanx b) —C0Secx = —C0Secxcotx

16



The Product Rule

This is used to differentiate a function which is written as a product of two
functions. If the functions are f(x) and g(x) then

(fg)=fg+fg’
Differentiate the first, leave the second add leave the first, differentiate the
second.

Example: Differentiate
a) y=x2sin3x Here f(x)=x? and g(x)=sin3x
%szsin3x+x23c053x
= 2xSinx+3x%c0s3x
b) y=xV2x-1
= x(2x — 1)% Here f(x)=x and g(x)= (2x — 1)%
1 1
%z 1x (2x — 1)5+x%(2x—1)_5><2

1

_ (2x—1)2 n X i
1 =
(2x—1)2
= 2x—11 +— Find common denominator.
(2x-1)z  (2x-1)2
3x—-1 . . .
C V2x-1 Write answer as a single fraction.
Exercise 4.
1  Differentiate the following functions using the product rule.
a) y=x%(x —3)? b) y =x(2x + 3)* C) y=xVvx—6
d) y =+vx(x—3)3 e)y=(x+1D%2(x—-1* f) y=x3V3x—-1
g) y = xsinx h) y = x%sinx 1) y = sinxcosx

j) v =sin2xcos5x K) y = cosx?sin3x

17



The Quotient Rule

This is used to differentiate a function which is written as a quotient of two
functions. If the functions are f(x) and g(x) then
Qq’szjy’
g g
For the numerator - differentiate the first, leave the second subtract leave
the first, differentiate the second.
For the denominator — square the original denominator.

Examples: Differentiate the following functions using the quotient rule

2_1 _ 2x
a) y = i2+1 b) Y= x2+1
1 1
dy _ 2x(x* +1) = (x* = 1)2x dy 2(x*+1)2- ZX%(XZ + 1) 22x
dx (x% + 1)2 dx x2+1
3 3 1 1
_ 2x° + 2x — 2x° + 2x ~ 2(x2 + 1)§ _ 2x2(x2 + 1)—7
(x2 +1)2 B x?+1
4 2(x% + 1) — 2x? 2
T (x2 + 1)2 = 3 = 3
( ) (x? +1)2 (x? +1)2
Exercise 5
1 Differentiate using the quotient rule
x? 4—x 4x
a) y=— b) y=— C) ¥ ={0s
_ Z_x2 _ (1-2x)3 _ Wx+1
d y=— e) y="—23 y=—7

2  Differentiate the functions in q1b and e using the “splitting up”
method from Higher.

3  Try qld by dividing 2x? by x-2 first.

d d
4  Show that a) —tanx = sec’x  b) ——cotx = —cosec?x

18



Derivatives of New Functions

f(X) P (x)
tanx sec?x
CcOSecx -COSECXCOtX
secx secxtanx
cotx -cosec?x
eX eX
Ln X 1
X

Many of these have been proved using the chain rule and quotient rule,
now they should be learned as standard derivatives.

Examples: Differentiate

a) y = tan2x
dy

= = 2sec?2x
dx

C) y = 3cosec2x

d
d_i’ = 3 X —2cosec2xcot2x
= —b6cosec2xcot2x
e) y =e¥
L — 3¢3x
dx

b) y = tan®x
Y _ 2tanxsec?x
dx
d) y = 2sec3x
4y _ 2 X 3sec3xtan3x
dx
= 6sec3xtan3x
f) y= ex’
& _ 2xe*’
dx

d
- Z(ef) = £ f(x)
In general: ™ (e ) f(x)e

19




g y=In(3x + 2)

1
3x+2

dy
dx_

3
T 3x42

In general

I) y = x2p3%

dy
— = 2xe3* + 3x%e3”

) _Inx
) y=—
1
dy _ ;xx—lnxxx
dx x2
__1-Inx

Exercise 6: Differentiate
a) y = tan32x

d) y = x?cotx

X

9) y=—

2x2

) y=xe”

1

c {ln(f(0)} = ' (x) %

f(x)
f(x) = x? g(x) = e
fl(x) =2x g'(x) = 3e**
f(x) = Inx gx) =x
fo=; gm=1
b) y = —2cosec*x C) y = secxtanx

e) y=Inbx+2) ) y=(x+2)e*

2

h) y=— ) y=InVxZ+1
1+ X—e™*
9 y=in(3) ) ¥ = e

20



Higher Derivatives

Llet y=x%+3x+4

dy
dx—2x+3

Here % Is defined as a function of x and so can be differentiated with

respect to x.
d (dy\ _
dx (dx) =2

d (d : : d? :
= (d—z) Is usually written as d—xz , f'"(x),or y'" and is called the second

derivative of y with respect to x.

This process can be repeated to get the 39, 4" ...nth derivative which
3y d4-y dny
x3 Tdx* " dx™

) d
can be written as -

The second derivative can be used to find the nature of stationary points.

2
If% > 0 at x = a then there is a minimum turning point at x = a.

2
If% < 0 at x = a then there is a minimum turning point at x = a.

Examples

1  Find the second derivative of f(x) = x3 —x%2 +5x —6
fl(x) =3x>—=x+5
fl'"x)=6x—-1

21



2  Find the coordinates of the stationary points of the curve
y = 2x3 — 3x% — 36x

2 _ 6x2 — 6x — 36
dx

For stationary points, set % =0

6x2 —6x—36=0

6(x—3)(x+2)=0

x=3 x=-2

y=81 y=44

dZ

—2 =12x—6

dx

At (3, 81) > 0 There is a minimum turning point at (3,81)

At (-2 44) < 0 There is a maximum turning point at (3,81)

Exercise 7
1  Find the second derivative of y = x3 + 5x2.

2  Find the third derivative of f(x) = sin3x.

3 Find ﬁ , when y = e** and where a is a constant.

Hence, make a conjecture for W'

4  f(x) = In(1-x), make a conjecture about the nth derivative.

5  Find the coordinates of the stationary points of the curve
y=x3—3x+2

22



The Derivatives of Inverse Trigonometric Functions
y = sin”lx
If y = sin~1x,then by definition, x = siny.

dx d 1 dx
= = cosy |assume that =2 = - —*0
dy dx i dy

y

dy 1
dx _-cosy

But since cos?y = 1 — sin’y = 1 — x?

cosy = +V1 — x?
Sincey = [—g,%],then cosy > 0 and so cosy = V1 — x?
dy _ 1
dx  V1—x2
. d 1
Result:y = sin"lx = = =
dx 1—x2

y = cos lx
If y = cos™lx,then by definition,x = cosy.

ax _ _ v _ 1 ax
5, — Siny |assume that il i 0
dy
dy _ 1
dx siny
But since sin’y = 1 — cos?y = 1 — x?
siny = +V1 — x?
Since y = [0, ], then siny > 0 and so siny = V1 — x?
y _ 1
dx 1—x2

_ d 1
Result:y = cos™lx = Z=—
dx 1—x2

23



y = tan"1x

If y = tan1x, then by definition, x = tany.

dx d 1 dx
= = sec’y |assumethat =< =——, = #0
dy dx 227 dy
dy

=1+ tan’y

=1+ x?
dy 1
dx — 1+x2

dy 1

Result:y = tan™lx = —==

dx  1+x2

Examples: Differentiate

a) y=sin"13x

y = sin"lu whereu = 3x

dy 1
du  Vi—u?
dy 1
— = X 3
dx  V1-u?
3
© V1—9x2
_1(x
c) y=cos?! (5)
d 1 1
i %2
X
1-(3)
1 1
X
==
1 1
= — X —
4 x2 2
12 a4
1 1
= — X —
4-x2 2
4
1 1
= — X —
4—x2 2
2
_ 1
4—x2

du
and — =3
dx

b) y=tan t4x

d_y _ 1

dx  1+(4x)2
B 4
1+ 16x2

d) y=cos™? (ﬁ)

y = cos tu where u=(1+x)71

dy 1 du -2
— = — and —=—(1+x
du 1—u? dx ( t )
_ 1
(1+x)2
2 1
u (1+x)2
1
1+u2=1-
T u (1+x)2
(1+x)%-1
(1+x)2
_ x%+2x
T (14x)2
Vx2+2x
V1+u? =
1+x
. 1 —(1+x)
1—u? x2+42x
dy —(1+x) % 1 i 1
dx Vx24+2x (1+x)2 - (1+x)Vx2+2x



Exercise 8: Differentiate

a) y=sin"1(Vx) b) y=tan"1(Vx)

c) y=xtan lx d) y=xtan™?! (g)

e) y=uxsin"x+V1—x2 f) y=cos71(2x—-1)

g) y=sin"t () h) y=tan? ()

) y=tan™? (\/12_967) ) y=sinT (\/%)

K) vy =tan 1(secx) ) vy =cos(sin"1x)

m) y = tan"1(e¥) n y=sin"1(x?)—xe*

Implicit Differentiation

Consider a function y defined by the equation: 3x% + 7xy + 9y® = 6

It is difficult or even impossible to write y in terms of x.

Such a function, y, is called an implicit differentiation.

These can be differentiated term by term with respect to x, assuming that
y is a function of x.

Examples:
1  Differentiate 3x? + 7xy + 9y° = 6 with respect to x.

Term 1 %(sz) = 6x
Term 2 7xy is a product and is differentiated using the product rule
Eny) = dx(7x) Xy+7x X = = 7y + 7xdx

Term 3  9y?is a function of y and y is a function of x
2 (9y2) = a
—(9y%) = 18y —

Term 4 6 is a constant and % (6)=0

Therefore differentiating 3x2 + 7xy + 9y° = 6 gives
dy dy
6x+7y+7xa+ 18ya— 0
(7x + 18y)2—z = —(6x + 7y)

dy (6x+7y)
dx (7x+18y)
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Find the equation of the tangent at the point (2,1) on the curve
2x% —3xy —y? =1.

: . : dy dy
Differentiating gives 4x — 3y — BxE —2y—=10

dx

—(3x + Zy)z—i: = —4x + 3y
dy _ 4x-3y
dx 3x+2y

Whenx=2andy=1:d—y=E
dx 8

The gradient of the tangent at (2,1) isg
The equation of the tangentis y — 1 = g(x —-2)
5x -8y =2

Find the derivative of sinx + 2cosy = 1
CoSX — Zsinyﬂ =0
dx
dy _ cosx
dx 2siny
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4  Show that (1,2) is a stationary point on the curve x? —xy + y3 =7
and find its nature.
Substitute (1,2) into the curve LHS = 12 — 1 x 2+ 23 = 7 = RHS,
therefore (1,2) lies on the curve.
Differentiating With respect to x gives

2x—y—x +3y2dy—0

(3y? —x)a=y—2x
dy _ y—-2x

dx  3y2-x
At (1, 2) d—y = 0, hence (1,2) is a stationary point on the curve.

To fmd 7, differentiate  2x —y — x— +3y2 > dy =0

Term 3 —x— is the product of - x and & E’

d d?
the derivative is — = — x &2
dx dx?

Term 4 3y?- —y is the product of 3y? and Z—z,

2 2 2
the derivative is 6y =2 +3y2 2 = 6y (2) +3y22

dx? dx?

The derivative of 2x — y — x— + 3y2 dy =0is

dy dy d%y dy \2 ) dZ
2T xetoy(D) vi=0
Substituting (1,2), % = 0 into the above line gives

d?y d?y
2———4+12—=0
dx? + dx?

d?y

2
—2=-2<0
dx 11

Therefore (1,2) is a maximum turning point.

Exercise 9:
1 Find Z—z for the following
a) x2—-y2=0 b) y?=2x+2y
c) xy*?=9 d) 4x?—y3+2x+3y=0
e) x3y+xyd= f)  sinxcosy =1
g e¥Y=2 h) e*lny=x

|
<
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2  Find the equations of the tangents at the points on the following
curves

a) x3-—2y3=3xyat(2,1)
b) x?y? =x?+5y? at (3,2)
c) ylx+y)?=3x3-5)at(2,1)

3 For the curve xy(x + y) = 84, find Z—z at (3,4).

4  Find the gradient of the curve x? + 3xy + y? = x + y + 8 at (1,2).

5  Find the 2" derivative of
a) x?—y%2=0 b) y?=2x+2y
c) xy?=09 d) 4x?—y3+2x+3y=0

6  Forthe curve, 4x? + y3 = 2x + 7y, find the values of:

dy d?y
— and — at (-1,2).

7 Show that (—1,3) and (0,0) are stationary points on the curve
3x2 + 2xy — 5y = 16y = 0 and find the nature of each.

Related Rates of Change

When one variable, x, is a function of another, t, then
dx 1

dc 4t
dx

When y is a function of x, say y = f(x), and both y and x are functions of
a third variable, t, such that x = x(t) and y = y(t) then we have, by the
chain rule:

dy
dy _dy dt _dy ,dx _ gt

dx dt  dx dt = dt 9
dt
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Examples:
1 Air is blown into a spherical balloon at a rate of 160cm3/sec.
Find the rate of increase of the radius when the radius is 5cm.

4 . . av
Vsphere = gnr3 from this we can obtain — = 4mrr?
. av
We are given vl 160.
. d
We require d—:.

The equation connecting the derivatives is
av_av,dar
dt — dr ~ dt
d
160 = 4mr2 x —
dt

dr _ 160

dt ~ 4mr?
dr 160

Whenr =5 = —= = 0.51cm/s
dt  4m(5)?

2 If G = (3m + 2)3 find C;—T when m = 1, given that Z—f = 3.

From G = (3m + 2)3 we can find g—:l =9(3m + 2)?

The equation connecting the derivatives is
a6 _ 46 | dm

dt ~ dm = dt

3=9(3m+2)?x =

dm 3 1

dt  9(3m+2)2  3(3m+2)2

dm 1 1
When m = 1, ~

t ~ 3(3x1+2)2 75

3  Acylinder, of radius r and height h, is closed at both ends. Its total
surface area is 15units?. Find an expression for %.

The surface area is given by A = 2nr? + 2nrh so
2mr? + 2nrh = 15 and r is a function of h.
Implicit differentiation gives

dr dr
4m‘E+ 2nh5+ 2nr =0

dar 27T -r

dh ~ 4mr+2mh  2r+h
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Exercise 10:

1

If P = (2m + 3)% find E—T when m = 1, given that % = 2.

If r = =2 find 22 when p = 1, given that & = 14.
1+p dt dt

The radius of a circular oil slick is increasing at a rate of
0.2metres/second. Find the rate at which the area is increasing
when the radius is 10m.

A rectangle has dimensions xcm and ycm. Both x and y are
changing but in such a way that the area of a rectangle remains
constant at 40cm?.

40 dx

a) Show that & = >
dt X dt

b) If x increases at a rate of 0.2cm/sec, find the rate at which y is
changing when x = 8.

The volume of a cylinder is constant at 50cm?, but both height and
radius are changing.
—100 ﬂ

a) Show that & S
dt nr dt
b) At an instant when the radius is 5cm, the height is decreasing
by 3cm/sec. Find the rate of change of the radius at this instant.

The volume of a sphere is increasing at a rate of 6cm?3/s.
Find the rate at which the surface area is increasing when the radius
Is 3cm.

Logarithmic Differentiation

The differentiation of complicated functions, particularly those that have
powers consisting of functions of x, or contain products and quotients,
can be made simpler by taking logarithms to the base e and differentiating
implicitly.
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Examples: Find the derivative
a) y=a*

Take [n of both sides

Iny = Ina*

Iny = xlna

Differentiating implicitly

Ix % = Ina (Ina is a constant)

y dx
dy

— = ylna
dx y
dy
dx

= a*lna

C) y = 2sinx

Take In of both sides
Iny = [n25"*

Iny = sinxIn2
Differentiating implicitly
1 dy

- X == = cosxIn2

y dx

d

d—z = ycosxiln?2

d .

d—z = 25" cosxIn2

1+x
) y=o

Take [n of both sides

/1+x
Iny =In P

1

Iny =In Gi—i)i
Iny = %ln (g)

1
Iny = E{ln(l +x) —In(1 —x)}
Differentiating implicitly

1 dy 1( 1 1 1 2
x e - it
y dx 21+x  1-x 2 \(1+x)(1—x)

}

dy _ ,1+x( 1 ) _ 1
dx 1-x \(1+x)(1—x) (1+x)%(1—x)5

3

b) y =x*

Take In of both sides
Iny = Inx*

Iny = xlnx
Differentiating implicitly
Ix Y = x4 x x =
y dx X
I = nx +1

y dx

d

d—z = y(lnx + 1)

ay _ . x

=X (Inx + 1)

d) y = (sinx)*

Take In of both sides
Iny = In(sinx)”*

Iny = xin(sinx)
Differentiating implicitly

1 da . cosx
= x 2 = In(sinx) + x X =

y dx sinx
1_.d .

= x = = In(sinx) + xcotx

y dx

Z_i’ = (sinx)*(In(sinx) + xcotx)

1

~ (140 (1-x)
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Exercise 11: Differentiate using logarithmic differentiation

a) y=10* b) y= 2% c) y=x*
. 1
d) y = x Sinx e) y = Xx f) y = xnx
i 5
g9) y=(nx)* h y=Un)™ i) y=o—
) _ x3(2x-1)°
J T (x+1)2

Using Parameters

It is sometimes convenient to define the co-ordinates of a moving point by
means of two equations, expressing x and y separately in terms of a third
variable, say t, called a parameter.

For example the position of a ball, relative to the x and y axes, may be
plotted at 1 second intervals. Here, clearly the x and y positions of the
ball depend on time t.
It can be shown that the path of the ball is given by the equations

x = at? and y = 2at where a is a constant.
These equations are called parametric equations of the curve, t being the
parameter.
By replacing t by various values in the two equations, we obtain the
coordinates of various points on the curve.

P(t): x = at?,y = 2at Hence P is the point (at?, 2at)
P(0):x=0,y=0 Hence P is the point (0,0)
P(1):x=a,y = 2a Hence P is the point (a, 2a)
P(2):x =4a,y = 4a Hence P is the point (4a, 4a)
P(3):x =9a,y = 6a Hence P is the point (9a, 6a)
and so on

x = at? and y = 2at are the parametric equations of a parabola.
It is often useful to eliminate t from the two equations to obtain an
equation involving x and y but not t.
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This equation is called the constraint equation.

Fromy =2at = t=—=—

y

2a

ay?

Fromx = at? = x=—=—

4a?

y2

= X = —

4a

= y? = 4ax
which is the general equation of a parabola whose axis of symmetry is the

X-axis.

Other common parametric equations are:

Parametric Equation Constraint Equation Shape
x =rcosf,y = rsinf x? +y%=r? circle
x = acos6,y = bsinf x? y? ellipse
) +—==1
a’ b2
x = asecl,y = btanf x? y? hyperbola
——5=1
a% b2
xy = c? rectangular hyperbola

c
x=ct,y=;

Finding the First Derivative of a Parametric Function
If a function is defined as x = x(t),y = y(t) (i.e.x and y are functions of t)

d dy d
then | = 4t | since =
dx hidd dx
dt
Examples:

dt dx dt

1 Find % on the curve x = at?,y = 2at.

X = at?
dx

— = 2at
dt

dy  2a

1
dx_Zat_t
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2  Find a formula for the gradient of the tangent to the curve whose
parametric equations are x = a(8 — sinf),y = a(1 — cos0).
x = a(f — sinf) y = a(1l — cos0)

dx dy .
— = 1— — =

5 a(1l — cosH) 0 asind
ay asinf sinf

dx a(1—-cosH) " 1-cosf

3  Find the coordinates of the points onthe curve x = 1 —t%,y =t3 +t
at which the gradient is 2.

x=1-—t? y=t3+t
=2t Y =32 +1
dy _ 3t*+1
dx -2t
2
Gradient =2, therefore 3t_2+1 = 2
3t +1=—4t

3t2+4t+1=0

t+1)@Bt+1)=0
1

t=-1 t=-—3
Att=-1: x =0,y = —2. The point is (0, —2).
1 8 10 . . (8 10
Att——g: X=5y=-5 The pomtls(g,—;).

4  Find the equation of the tangent to the curve y = at?,y = 2at, at the

point P(t).
x = at? y = 2at
d d
= = 2at ==
dt dt
v _2a _1
dx  2at t

P(t) = P(x,y) = (at?, 2at)
y — 2at =%(x—at2)

ty — 2at? = x — at?
x —ty = —at?
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Exercise 12:
1  Find % in terms of the parameter:

a) x=t3+t? y=t>+t b) x = 4cos, y = 3sinf
c) - -t d) _ =1, _ 2t
Y= Y TS Y= YT
_ 2 N — 42 _ _t ot
e) x=({t+1), y=t 1 f) X=—, Y=
g) x =cos26, y=4sinf h) x = acos?0, y = asin30

) x = elcost, y = etlsint
)  x=a(t—cost), y=a(l-sint)

2  Find the equations of the tangents to these curves at the point P(x,y)
a) x=ct,y=- b) x=at? y=at(t*-1)

C) x=%(t+—),y=%(t—%) d) x=secH, y=tanb

Finding the Second Derivative

d’y _d (dy) _ay (dy) % dt
dx2  dx \dx/  dt \dx dx

Examples:
.. d d?
1  Forthe curve x = at?,y = 2at, find = and —.
dx dx
x = at? y = 2at
d d
= = 2qat ==
dt dt
y _2a _1
dx 2at t
a%y d_y(d_) at
dx?2  dt \dx/ = dx
_ ﬂ(l) 1
de \t) " 2at
-1t
otz 7 2at
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d?y
2

2  Forthe curve x = acos6, y = asind, find Z—i’ and —

X = acosf y = asinf
dx . d
— = —asinf & — acosf
dt dt
d acos@
2= — = —cotf
dx —asin@
d’y _ dy (dy) dt
dx2  dt \dx dx
dy 1
= —(—cotfO) X
dt ( ) —asiné
= cosec?x X —
—asiné
_ 1
sin30

3 Find the turning point on the curve x = t, y = t3 — 3t and determine
their nature.

x=t y=1t3—3t
L L3¢z -3
dt dt
2_
BB 323
dx 1
For stationary points, set Z_Z = 0.
3t2-3=0

3t—-—1)(t+1)=0

t=1 t=-—1

Whent=-1, x=-1, y =2, (—-1,2)
Whent=1, x=1, y=-2, (1,-2)
Ly _ by (d)

dx? dt \dx dx
_ Y 2 1
=— (3t —3) X -
= 6t

2
Whent = -1, % IS negative, so (—1,2) is a maximum t.p.
2
When t = 1, % IS positive, so (1,—2) is a minimum t.p.
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Exercise 13:

i d d?y .
1 Find 2 and d—xz in terms of t:

dx
a) x=t12,y=1+t b) x=(+1? y=t*-1
C) x = 4cos6H, y = 3sinf d) x =cos?0, y=sinf

e) x = 2cosf — cos260, y = 2sinf + sin26

2  Acurve has parametric equations x =t — cost, y = sint.
Find the coordinates of the points at which the gradient of the curve
IS zero.

3  Find the coordinates of the stationary points on the curves and
determine their nature:
a) x=4—1t% y=4t—1t3 b) x=(5-3¢t) y=6t—t?
c) x=t?+1, y=t(t—23)2

2
4  Giventhat x =t — sint, y = 1 — cost show that y? % +1=0.

Velocity
Suppose the point P moves along a curve in the x — y plane and suppose
we know its position at any time t is given by x = f(t) and y = g(t),

% Is the velocity in the x direction and % Is the velocity in the y direction.

2 2
The magnitude of the velocity is therefore| |v| = \/(%) + (%)

which gives the instantaneous speed of the particle at P.
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Examples:
1  The position of a golf ball, t seconds after being hit, is given by
x = 10t, y = 30t — 5t2,
Find the speed of the golf ball when it first hits the ground.
The golf ball first hits the ground when y = 0.

30t — 5t% =

56(6 —t) = 0

=0 t=6

n/a
- 10 Y —30-10t
dt dt

Att=6 Z=10 Y _ _30

dt dt

The speed first hits the ground is
lv] = /102 + (=30)2 = 31.6m/s

2 A cannon ball is fired and its position t seconds later, is given by
x =10t, y = 2 + 9t — 5t2.
The target is 2 metres above the ground.
a) Find how far away the target should be if the cannon ball is to
hit it.
b) Whatis the speed of the cannon ball when it hits the target?

a) Wheny=2, 2+9t—5t?>=2

9t — 5t =0
t(9—-5t)=0
t=0 t=-
5

n/a

When t=§, x=1o><§=18

The target should be placed with its centre 18 metres
horizontally from the cannon and at a height of 2 metres.
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b) & =10 Y —9_10t

dt dt
d d

Att=> Z=10 - 9
5 dt dt

The speed first hits the ground is
lv] = /102 + (=9)2 = 13.5m/s

Exercise 14:
1 Attime t, the position of a moving point is given by
x=t(2—-t), y=t(3—1t)
Find the speed whent = 0 and t = 2.

2 Attime t, the position of a moving point is given by
x=t+1 y=t*>-1
Find the speed when t = 2.

3 Attime t, the position of a moving point is given by
X = cos2t, y = 2sint
Find the speed when t = 0.

4  Attime t, the position of a moving point is given by
x=et, y=e"%

Find the speed when t = [n3.

5 Attime t, the position of a moving point is given by
X = sect, y = tant
Find the speed when t = %.

6 Attime t, the position of a moving point is given by

x=In(t+1), y=_t?
Find the speed when t = 1.
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A particle moves so that its position at time t is given by
x = 4cost, y = 3sint.
Show that its speed is V9 + 7sinZ?t.

Hence find the maximum and minimum speeds and the
corresponding positions of the particle.
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N7 Sequences and Series AAC 1.2

Introduction
A set of numbers, stated in a definite order, such that each number can
be obtained from the previous number according to some rule is called a

sequence.
3,5 7,9 11, ............ is an infinite sequence.
3,5,7,911,........... 47 is a finite sequence.

An expression for the nt" term (u,,) of a sequence is useful since any
specific term can be obtained from it
1, 4,9, 16, 25,......... has an n'"* term u,, = n?.

The sum of the terms of a sequence is called a series. The series of a
sequence is denoted by S,,.

Arithmetic Sequences and Series
An arithmetic sequence is one which each term differs from the previous
term by a constant called the common difference (d).
lL.e. Upyy — Uy, =d OF Uy =u, +d
If the first term is denoted by a and the common difference is d, then

u]_:a
u, =a+d
U3=a+2d

U4=a+3d

u,=a+m-1)d

The nt" term of an arithmetic sequence is denoted by the formula:
u,=a+m-1)d
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Example:
Find a formula for the n* term of the sequence 8, 11, 14, 17,.....
Hence find the 20" term.

a=8 d=11-8=3

u,=a+m-1)d

u,=8+m—-1)x3

U, =3n+5

Uyo =3 %2045 =65

The sum of the first n terms of the series is:

S, =a+(@a+d)+(@a+2d)+(@a+3d)..(a+ (n—1)d)
Rewriting these terms in reverse order gives

Sp,=(@a+(n-1Dd)+-++(a+3d)+(a+2d)+(a+d)+a
Adding corresponding pairs of terms gives

25, =2a+(n—-1Dd)+R2a+(n—-1d)+ -+ Ra+ (n—1)d)

25, =n(2a+ (n—1)d) since there are n terms

Spn=>Qa+ (n—1)d)

The sum of the first n terms of an arithmetic series is found using:
n
S, = E(Za + (n—1)d)

Note: If the series is finite, then
Sp=>Qa+ (n—1)d)
=§(a+a+(n—1)d)

=~(a+1) where Lis the last term.
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Examples:

1 For2+5+8+11+....., find u;5 and Sg.
a=2 d=73
u,=a+n-1d
U, =2+Mm—-1)x3
u, =3n—1
Us =3%x15—-1=44

Sp =7 Qa+ (n—1)d)
58=§(2><2+(8—1)><3)=100

2 If the first term is 37 and the common difference is -4,
find u;; and Sg.
a =37 d=—4
Uu,=a+mn-1)d
u,=37+(n—-1) x —4
U, = —4n + 41
Us = —4 X 15+ 41 =—-19
Spn =5 Qa+ (n—1)d)
58=§(2x37+(8—1)><—4)=184
3 Find the number of terms in the series 5+ 8+ 11 + 14 + --- + 62.
a=>5 d=3
u,=a+m-1)d
U, =5+(n—-1)x3
U, =3n+2
3In+2 =62
n =20 The number of terms is 20.

We do not know the
value of n but do know
the nt" term.
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4 Findthesumof2+4+6+8+--+ 146

a=2 d=2 We must

u, =a+((n-1d determine the
Up=2+Mm—-1)x2 value of n first.
U, =2n
2n = 146

n=73
Sp=7>(@+1)
S73 = = (2 + 146)
S,5 = 5402

5  The second term of an arithmetic sequence is 18 and the fifth termis
21. Find the common difference, the first term and the sum of the
first 10 terms.

Second term a+d=18

Fifth term a+4d =21

Solving the simultaneous equations gives a = 17,d = 1.
The common difference is 1.

The first term is 17.

S, = §(2a +(n—1d)
S10="(2x17+ (10 - 1) x 1) = 215

Exercise 1:

1  Find the formula for the n*"* term of each of the following sequences
and find the requested term.

a) 3,11, 19,... Us
b) 8, 5, 2, U1s
c) 7,6.5,6,.. Uy

2  Find the number of terms in each of the following sequences.
a) 2,4,6,...46
b) 50,47, 44,...14
c) 2,-9,-20,....-130
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3  State the values of a and d in each of the following series and find
the requested S,,.

a) 4+10+16+... Si2
b) 15+13+11+... S20
c) 20+13+6+... Si6

4 For each of the arithmetic sequence, find S,, indicated.
a) u,=15 ug =21 S,
b) wu, =18 d=-5 S,
C) us3=7 u;,=61 S

5 SlO == 120, SZO = 840, f|nd 530.
6 Ui = 7, Sg = 18, find a,d and Ur-

7  How many terms of the arithmetic series 28+24+20+........
does it take to give a sum of zero?

8  The sixth term of an arithmetic sequence is twice the third term.
If the first term is 3, find d and the tenth term.

9  How many terms of the arithmetic series 1+3+5+....
will give the sum 15217

Arithmetic Sequences and Series
A geometric sequence is one which the ratio of each term to the previous
term is a constant called the common ratio (r).

e, M= or w,.q=u,r
Un
If the first term is denoted by a and the common ratio is r, then
u1 =a

u,z - u17‘ = qar
U3 = U,T = ar?

Uy = Uy_q7 = ar®D
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The nt"* term of a geometric sequence is denoted by the formula:
u, = ar@® 1

Let S,, denote the sum of n terms, a the first term and r the common ratio.
S, =a+ar+ar?+ar®+--+ar®™? 4 qr®-b
rS,= ar+ar’+ard+ar*+-+ar®? 4+ qr®D 4 g
S, —rS,=a— ar™
1-r)S,=a— ar™

a(1-r™")
Sn = 1-r

r+1

Note:

If r > 1, it is more convenient to use the result in this form S,, = ar —1)

r—1

The sum of the first n terms of a geometric series:
a(1-r™)

Sp = - r+1
Examples:
1  Find u,, for the geometric sequence 144,108, 81, 60.75 ...
144 3
a=144 r=—=-
108 4
u, = ar® 1
(n—-1)
w, = 144 X G)

Uy = 144 X G)g =10.812 ...

2 Flnd519=3_6+12—24‘+"’
-6

a=3 r =< = —2
a(1-r™)

Sn = 1-1

S, = 3(1-(=2)")

1+2

_(_»319
Sie = w = 524289
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3 A geometric series has the first term 27 and common ratio g.

Find the least number of terms the series can have if its sum

exceeds 550.
a=27 r = 2
3

S, = a(rn—l)
"
5 — 27[(43) 1]

ForS,>550 = n>7136.. > n>8 =>n =38
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4  Givenuz = 32, ug = 4. Find a,r and Sg.
uz = ar? =32 [1]
Ug = ar®> =4 [2]
, ar® _ 4
2] =
r3 ==
8
1
r = E
Substituting r = % into u; gives
1 2
a(3) =32
a =128
a(1-r™")
Sn = 1-r
1\ 8
128{1—(=
Sp = ( 1(2)>=255
1=
Exercise 2:
1  Find the common ratio for each of these geometric sequences
a1, 3,9, 27,.... b) 12, 6, 3, 1.5, ....
c) 7, 0.7, 0.07, .... d) 18, 54, 162, ....
e) 2.25, 1.5, 1, ... 22 = ..
4° 8" 16
9 1, -1, 1, -1, ... h) 1, -2, 4, -8, ....
2  Write down the first 4 terms of these geometric sequences
(n—-1)
a) u, =3V p) u, =3(=2)"D c) un =6(3)
3 By first finding u,, find the required term in the following geometric

sequences
a) 1, 2, 4, ... Usg b) 2, 6, 18, .... Ug
c) 4, 12, 36, .... ug d) 2, 20, 200, .... uc

e) 1, -2, 4, ...  ug 6 3 2 ... U,
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4 Find the formula for the nt"* term of these geometric sequences
a) 1, 2, 4, ... b) 3, 6, 12, .... c) 2, -6, 18, ....

d 9 3 1, .. e) 4, 2, 1, ... RE i%

5  Find the common ratio and the fifth term of these geometric
sequences
a) a=6u;=24 b) a= 50 u, =400
c) a=36u,=-12

6  Find the sum of each of the following geometric series and simplify
the answer as far as possible

a) 1+2+4+.... to8terms b) 2+ 6+ 18 +.... to 6terms

c) 2—4+8—.... to5terms d 2—-6+18—.... to5terms

e)1+%+i+.... to 6 terms f) 1+§+§+.... to 5 terms

g) 1+ x +x?+....ton terms hyl—y+y?—... tonterms
7  Findnif

a)3+32+3%+3%+..-+3" =363
b)2+22+23+2%+...42" =510

The Sum to Infinity of a Geometric Series
Consider the infinite series 8+4+2+ 1+ % + % + % + 1—16 +....

S, =8 S, =12 S, = 14 S, =15
1 3 7 15
552155 S6=1SZ S7=15§ 58_151_6
31 63 127 255
Sg = 153_2 510 == 15@ 511 = 15;8 512 = 15%

The sum S,, appears to be approaching a value of 16.
By taking a sufficiently large value of n, we can make S,, as near to 16 as
we wish,
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We say that S,, tends to a limit of 16 as n approaches infinity and we write
S, > 16 as n > (The series tends to 16 as n tends to infinity)
lim S, = 16

n—-oo

S =16

a(1-r")

In general, S,, = ,and if -1 <r < 1, then r™ - 0 for large values of n.

1-— n
2A777) hecomes S, = -2

1-1r 1-1r

Therefore, as n — o,7" - 0then S, =

The sum to infinity of a geometric series
a
Seo =
1—r
ifandonly if -1 <r < 1.

Example: Find the sum to infinity of the geometric series 16 + 12 + 9 +....

a=16, r = 2_3
16 4
Since -1 <r<1,S, exists. This must be stated
a
S0 =157
Seo = — = 64
1=
Exercise 3:
By first finding the common ratio, find the sum to infinity if it exists.
a) 1+-+5+.. D) 1+2+4+.. C) 4+1+7+..
d8+4+2+.. e) 1-54+25—-.. f)10-9+8.1 —..

1 1 4 8
g)l—z+z—... h)2+§+3+...
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Power Series

Suppose that f(x) =a+ bx + cx? + dx3
Then f'(x) = b+ 2cx + 3dx*
f’(x) =2c + 6dx
f7(x)=6d
All further derivatives are zero.
From above f(0)=a
f/(0)=b
" (0 (0
frO) =20 » c=2=L0
fIII(O) — 6d = d — f’”(O) — f”,(O)

6 3!
Hence f(x) = a + bx + cx? + dx3 can be written as

fx) = F(0) + f'(0)x + L2 2('0)x2 + f—gl(o)x3

Any series of the form ay, + a;x + a,x? + asx3 + a,x* + -+ is called a
power series.

In many cases, the sum of such series becomes bigger and bigger as you
add on each successive term, in which case the series is said to diverge.
On the other hand, some series are such that, as more and more terms
are added, the sum approaches more and more closely to a particular
limit, (i.e. a single function), in which case it is said to converge to this
limit.

MacLaurin’s Theorem
MacLaurin’s Theorem states that, under certain circumstances, a function
f(x) is given by
flx)= f(0)+f'(0)x + fz—(!o)x2 + fB—EO)x3 + *x‘* + ot f(:l!(o)
The series can be found if £(™(0) exists for all values of n.
Some series converge to f(x) for all values of x and other converge to
f (x) for a limited range of x.
In the following examples, the range of values of x for which the series is

valid will be given, but not justified.

x’f’l
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Examples: Use MaclLaurin’s theorem to expand as a series of ascending
powers of x:
a) f(x)=e*

f=e*  f(0)=e’=

fa)=e*  f(0)=e=

freo=e*  f0)=e =

fray=e*  fr0)=e=

Hence, e* = 1+x +%x2 +ix3 + .- forallx eR

2 3
This can be written as e* = 1+ = TR TRT

b) f(x)=In(1+x)

f(x) —1n(1+x) f(0) —ln(1+0) =0
f'(x) = m f(0) = m

0 = - (HX)Z frO = —o jo)z = -1
fre) = (1+X)3 f70) = (1+0)3 =2
fe) = - (1+x)4 fo) = - (1+o)4 =6

Hence, ln(1+x)—0+1x+ ) 2+ 3% +(6) 4.

ln(1+x)=x—7+?—:+--- for —-1<x<1

c) f(x)=sinx (xinradians)

f(x) = sinx f(0) =sin0=0
f'(x) = cosx f'(0) =cos0 =1
f''(x) = —sinx f(0) = —sin0 =0
f""(x) = —cosx f""(0) = —cos0 = -1
) (x) = sinx F(0) =sin0 =0

Hence, sinx = 0 + 1x +2x2 +;—'1x3 +%x4 + .

x  x3
smx—;——+ + - for all x
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d) f(x) =tan1x

f(x) = tan"1x f(0)=tan"10=0
fil) = 1+1x2 f1(0) = 1+102 =1
00 = fr f'(0) = s = 0
O = O

Hence, tan™x = 0+ 1x +%x2 + ;—'Zx3 + ..

3 5 7
tan"lx = x — x? + x? — x7 .. for -1<x<1

e) f(x)=@+x)" (The Binomial Theorem)

fx) =1 +x)" fO=01+0"=1
f'(x) =n@+x)"1! () =n1+0)"1=n
f'(x) =nn—-1)1 +x)"? f'(0) =n(n-1)

') =nmn-Dn-2)A+0)"2  f7(0) =nn-1)(n-2)
Hence

nn-—1 nn—1)(n—-2
1+x)" = 1+nx+%x2+ ( 3)'( )x3+

1+x)" = (g) + (T)x+ (”'zl)x2 + (g)x?’ + ot (Z)x"

Exercise 4. Expand the following functions in ascending powers of x as
far as the power indicated

a) f(x) = cosx as far as x° b) f(x) = tanx as far as x3

c) f(x) = sin"1x as far as x3 d) f(x) =In(1 —x) as far as x*
e) f(x) = e3* as far as x* f) f(x) = In(1 — 2x) as far as x°
g) f(x) = sin3x as far as x° h) f(x) = tan2x as far as x°

) f(x) =In(2 + x) as far as x> (hint: In(2 + x) = In2(1 + g)
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Using More Than One Expansion
Examples:

a) Expand f(x) = e~ **sin3x in ascending powers of x as far as the

x* term using the expansion for e* and sinx.

2 %3 P

120 3 4l
—ox —2x  (=2x)%  (-2x)3 (—2x)*
e =ty ey

2
=1—2x+2x2—§x3+§x4+---

3 5

. X X X
Sinx = ___+_+...

1! 3! 5!

. _ 3x  (3x)3 . .
sin3x = T T (ignore higher powers)

= 3x—§x3 4o
Hence,f(x) = e ?*sin3x
= (1—2x+2x2—§x3+§x4+---)(3x—§x3 +)
= 3x —2x — 6x% + 9x* + 6x° — 4ot + -

= 3x — 6x* +§x3 + 5x*
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b) Expand f(x) = In(cosx) in ascending powers of x as far as the term in x°

using the expansion for In(1 + x) and cosx.

2 3 4 5 6
In(l+x)=x-—Z—+= -4+ _Z 4.
2 3 4 5 6

2 4 x6 2 4 6

x x x x x
coscx=1-—+———+- = cosx—1=—-——7—+———+--
2 4 6 2 4 6
In(cosx) = In(1 + (cosx — 1))
cosx—1)2 cosx—1)3 cosx—1)% cosx—1)° cosx—1)°
=(COSJC—1)—( )_l_( )” ( ) ( > ( )
2 3 4 5 6
2 4 6 2 4 6 2 2 4 65 3
x x x 1 x x X 1 x x x
() AL B ()
2 4 6 2 2 4 6 3 2 4 6
2 4 6 4 6 6 6
x x x 1(x x X 1 x
R e
2 4 6 2\ 4 48 48 3 6
1 1 1 1
=—-x?+—x*——x® —-x*+ —x® + —x® ——x°
2 24 720 8 96 96 24
1 1 1
2 12 45

Exercise 5. Expand

a) eS™™* as far as the term in x*

b) In(1 + sinx) as far as the term in x*
c) e*sinx as far as the term in x°

d) In(1 + e¥) as far as the term in x*
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Introduction to Complex Numbers

We are in a position where we can solve a range of quadratic equations
by factorisation and by the quadratic formula.

When the roots are real (b — 4ac = 0) we obtain one or more solutions.
Some equations however have no real roots (b? — 4ac < 0).

We can solve x? —49 = 0

x? =49
x=-=70r7
However, x? + 49 = 0
x? = —49

has no solution in terms of rational or irrational numbers.
In order to solve all quadratic equations we must extend our notion of
number and introduce the concept of an imaginary number.

Suppose there exists a non-zero number i such that i? = —1.
Then we can solve x? +49 =0

x? = —49

x? =49 x (—1)

x? = 49i?
x=-=7ior7i

A number of the form bi, where b is a real number, is called an imaginary
number and x + yi where x and y are real is called a complex number.

z is commonly used to denote a complex number and so is z = x + yi,
then the real part of the complex number z is written as Re(z) = x and the

imaginary part is written as Im(z) = y.

We can now solve quadratic equations with no real roots.
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Example: Find the roots of the equation x? — 2x + 5 = 0.

x = —b+Vb2—4ac

- 2a
X = 2+4/(—2)2—4x1x5 Note

2x1 .
If one root of the quadratic

—_— Zi _16 . . q .
X =" equation is x = a + bi, then
X = 2+V16i2 the other root is x = a — bi.

2

2440 These are called the complex

X=- conjugates of each other.

x=1—2i or 1+ 2i

Proof: To check the roots, substitute into x> — 2x + 5 = 0.

x=1-2i = (1-20)*-21-2)+5
=1—4i+4i*>—2+4i+5
=1—4i—4—-2+4i+5
=0

x=1+2i = (1+2)?*-2(1+2)+5
=1+4+4i+4i*>—2—4i+5
=0

Notation
Z (read as z bar) is the complex conjugate of z
l.e.if z=a+ bi then z = a — bi.

Exercise 1:
1  What are the values of:
a) (20)° b) (3)? c) (4))? d) (—2i)? e) (—3i)?
2  State the complex conjugates of the following complex numbers:
a) 3+2i b) 5-3i C) 8+2i d) -5i
3  Find the roots of the following equations:
a)xt+4=0 b) x2+9=0 c)x2+3=0
4 Using the quadratic formula, solve the following equations:
a)x?—2x+2=0 b) x2 —4x+5=0 C)x?—4x+13=0
d)4x? —4x+5=0 e)2x?—-2x+1=0 fI9x?—-6x+2=0
5  Check that the solutions you found in g3 satisfy the original equation

by substitution.
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6  Solve the following equations
a)x3—-1=0 b)x*—1=0
c)x3—x?—x-2=0 d) (x? +4)(x2+9) =0

Add/Subtract/Multiply/Divide

Addition: Add real parts and add imaginary parts
(a+bi)+(c+di)=(a+c)+ b+ 4Ad)i
Subtraction:  Add real parts and add imaginary parts
(a+bi)—(c+di)=(a—c)+ (b —4A)i
Multiplication: Multiply using the rules for multiplying brackets
(a + bi) X (c + di) = ac + adi + bci + bdi?
= ac + adi + bci — bd
= (ac — bd) + (ad + bc)i
Division: In a similar way to dividing surds use the complex
conjugate because
(a + bi) x (a — bi) = a? — abi + abi — b?i?
= a® + b?
which is a real number.

Examples: Calculate
aB+i)+(A+2i))=4+3i
b)(2-3i)—(1+2i)=1-5i
c) 2—i)x(3+2i)=6+4i—3i—2i>
=6+4i—3i+2
=8+
d) 5+3l: _ 5+31: 1+31:
1-31 1-31 1431
_ 5+15i+3i+9i?

T 1+43i-3i-9i2
_ —4+18i
10

2 9.
=—-+=l

5 5
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e) (1—1i)°

By Pascal’s Triangle or
134+3x12x (=) +3x1x(=i)?+ (=) (A-DA—-1)?
=1-3i—3+i =(1-1-2i+i?
=—-2-2i = (1 —1i)(=2i)
= —2i + 2i*
=—2-2i
f) V15 + 8i

Let V15+8i=x+yi
15+ 8i = (x + yi)?

= x%2 —y% + 2xyi
Equating real and imaginary parts gives
x? —y? =15 (1)

2xy =8 = y=§ (2)

Substituting (2) into (1) gives
2
x? — G) =15
x2 -2 =15
X
x*—15x2-16=0
(x?2—-16)(x?2+1)=0
x?—16=0o0r x2+1=0
x is real so x? + 1 = 0 gives no suitable values

x=—40r4 = y=-1orl

VI5+8i=—4—iord4+i

Exercise 2:

1 Express each of the following in the form x + yi
a)B+7D)+2+1D) b)) (9—-2i)—(3+i) c¢)(—=2+i)+ (740
d@B+20)+B-2i) e (2+i)—(—2—-1i) f)(a+bi)+ (a— bi)
g) (a + bi) — (a — bi)

2 Express i3, i*, i°, i° i’, i8 i®andi'? in their simplest form.
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3 Simplify
a) 2i X 4i
d) -i(1 — 4i)
9) (2 + 3i)(2 — 30)
) (a + bi)(c — di)
m) (1 + i)*(1 —i)°
0) (cost + isint)?

b) —2i? c) i(3 + 2i)
e)2+i@B+i) f)(6—5i)(2+3i)
h) (a + bi)(a — bi) 1) (a + bi)(c + di)
k) (1+1i)3 ) (1+i)*

n) B+i)*+ (3-10)*

P) (cosA + isinA)(cosB + isinB)

Simplify and express in the form x + yi

44i 1 2—1 5+i a+bi a+bi
a) = )% 9= Do 9T Daa
10+5i 1 ., COSA+isinA
g) 2—1 h) COSA+isinA I) COSA—isinA

Simplify (x —1—-i)(x —1+1)

Hence state an equation which has (1 + i) and (1 — i) as its root.

Find the square root of each of these

a)3—4i b)21-20i ¢)2i d) —24 + 10i

Argand Diagrams

Complex numbers can be represented geometrically using the x and y
axes as the Real (Re) and the Imaginary (Im) axes respectively.

A
Im

> Re

This diagram is known as
complex plane.

When we plot points on a complex plane it is called an Argand Diagram.

A
Im

Z=X+yi

> Re
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Examples

1 Plotz =5+ 3i on an Argand diagram ™

z=5+3i 5,3)

k!

xV
D

|m A 5

2 Plotz =1 - 2i

1
\ Re
)

z=1-hi | (1,-2)

3  The points A (1,0), B (0,1), C (-1,0) and D (0,-1) are shown below.
Write down the corresponding complex numbers represented by
these points.

OA:1+0i=1
OB:0+1i=i
OC.—1+0i=-1
OD:0—-1i=—i

The Modulus and Argument of a Complex Number

On occasion it is convenient to express complex numbers in another
form, particularly when we wish to find or illustrate the product, quotient or
powers of complex numbers. To do this we must consider the modulus
and the argument.

Consider z = x + yi m 4
(xy)
x =rcosf and y = rsinb r
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A complex number written in the form z = r(cos8 + isinf) is in polar form.
r is the modulus (magnitude) of z, this is written as Mod z or |z|.
0 is the argument (amplitude) of z, this is written as arg(z).

r=|z| = /x2 4+ y? and 0 = arg(z) = tan™? G)

Note: We prefer the value of 6 to be — < 8 < r if working in radians or
—180 < 6 < 180 if working in degrees. We can add or subtract multiples
of 2w or 360 to 8 and obtain the same complex number.

An Argand diagram is useful for helping to find the argument.

Examples: Find the modulus and the argument of the complex numbers
a) z=1+i

A

z] = V12 + 12 =2 m (1,1)
arg(z) = tan™" G) = % or 45° 1
R
by z=-1+i e
| A
2l = J(-1)? + 12 =2 1y
arg(z) = tan~! (_il) =1 —% - %” ] i
| L Re
c) z=-—/3—i m
|z| = \/(—x/§)2 +(-1)2=2
1 51 7 \/§ >
=tan"!(—=) =- ) Re
arg(z) = tan (_\E) =— 1 C
Remember —-n <6 <m (\/§1)
d z=1-i Im 4
|z = V12 + (-1)2 = V2
—tan-1(Z1) = ™ 1
arg(z) = tan ( - ) = .
1
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Exercise 3;

1

Find the modulus and the argument of

a) 1++v3i b)2-—2i c) —V2 —V2i d) 2i e) 3

f) —V3 +i g) —3i h) —5 i) —3 — 3i
Giventhatz; = =3 +3v3iand z, = V3 +i
a) (i) Find |z, |z3|, |212,] (i) Find arg(z,), arg(z;), arg(z,z,)

b) Repeat for z; = 3i and z, = V2 — +/2i and note the result.

Giventhatz; = =3+ 3v3iand z, = V3 +i
a) (i) Find |z, 1z,l, |2 (i) Find arg(z,), arg(z,), arg(2)
b) Repeat for z; = 3i and z, = V2 — +/2i and note the result.

Giventhatz =141
a) () Find |z|, |iz| (i) Find arg(z), arg(iz)
b) Repeat for z = —/3 — i and note the result.

Giventhatz=1+1i

a) () Find |z|, |Z] (i) Find arg(z), arg(z)
b) Repeat for z = —/3 — i and note the result.

Giventhatz=1+1i
a) (i) Find zz (i) Find |zz|, arg(zz)
b) Repeat for z = —/3 — i and note the result.

Summary of results

|z12,| = |z1| X |z,] arg(z,z;) = arg(z;) + arg(z;)

5 arg (2) = arg(z) - arg(z,)

Y4

_ |Z1|
|Z2]

liz| = |z| arg(iz) = arg(z) +§

1Z] = |z| arg(z) = —arg(z)
|zZ| = |z|? arg(zz) =0
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The Fundamental Theorem of Algebra
All complex polynomial equations have at least one complex root.

Consequently if a polynomial is of degree n, then there are precisely n
roots in the set of complex numbers. Some or all may be real, some or all
may be complex.
For polynomials with real coefficients: if x + yi is a root of a polynomial
equation then x — yi (the complex conjugate)is also a root.
(z — (x + yi)) and (z — (x — yi)) are factors of the polynomial.
(z—(x+yN(z—(x—yD) =2 = ((x+y) + (x — y))z + (x + yi) (x — yi)

=z? — 2xz + x* + y* (a quadratic factor)
Dividing the polynomial by this quadratic factor will reveal the remaining
factor(s) which may be real or complex.

Examples

1  Find the roots of the equation z3 — 2z2 — 8z + 21 =0
Using synthetic division -3|1 -2 -8 21
-3 15 -21
1 5 7|0
Since the remainder is 0, then -3 is a root.
z3—222—-8z4+21=(z+3)(z?-5z+7)
z2—-5z+7=0
Using the quadratic formula

5+v25-28 5+V3i 5 , V3.
7 = = :—i—l
2 2 2 2
5 3. 5 3.
The roots are z = —3, 5+§1, E—%L.

2 Verifythat z =1 4+ i is a root of the equation:
z*—3z34+52z2—4z+2=0.
Hence find all the roots of the form p + qi.
If z=1+iis aroots then

(1+D*-3(1+i)*+501+D?*—-4(1+i)+2must=0
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(1+i)2=1+2i+i%2=2i
(1+i)3=2i(1+i)=-2+2i
1+D*=[A1+D?]?=QRi)*=-4
—4—3(=2+2)+52)—-4(1+i)+2
=—44+6—-6i+10i—4—4i+2

=0 Therefore z =1+ i is a root.

Ifz=1+iisaroot,thenz=1—iis also a root.

The quadratic factor is (z — (1 +))(z — (1 — )
=22-(1-Dz—-A+Dz+ A+ -1
=z2—-2z+2

Find the remaining quadratic factor by dividing z* — 3z3 + 5z% — 4z + 2 by

7% =27+ 2.

z2 -z +1
22—27+42| z* =323 452> —4z+2

z¥ — 2723 4+ 222

—z3+32z%2 -4z
—z3 4222 -2z
72 —2z+2
72 =2z +2
0

z* — 3234522 —4z+2=(*-2z+2)(2* -z +1)
z2—z +1=0
;= 1+V1-4  1+V3i

2 2

=

+
2

[

N =

V3. 1 /3.

. o1
Therootsarez=1+1i, 1—i, =+—i, - ——I.
2 2 2 2
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Exercise 4:
1  Find all the roots of the equation z3 — 11z + 20 = 0.

2  Verifythat z = 1 + i is a root of the equation z* + 3z% — 6z + 10 = 0.
Hence find all the other roots.

3  Verify that z = —2 = 3i is a root of the equation
z*+ 722 —12z+ 130 = 0.

Hence find all the other roots.

4  Giventhat 2 — i is a root of the equation
3z3 —10z% + 7z + 10 = 0, find all the other roots.

5 Given that 1 — 2i is a root of the equation 3z3 + z + 10 = 0, find the
other roots.

6 Giventhat 3 +iis arootof z3 —3z%2 —8z+ 30 = 0, find the other
roots.

7 Showthat —1 +iis aroot of z* — 223 —z2 +2z+ 10 = 0 and find
the other roots.
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The Modulus and Argument of a Complex Number

On occasion it is convenient to express complex numbers in another
form, particularly when we wish to find or illustrate the product, quotient or
powers of complex numbers.

Consider z = x + yi Im 4
xy)
x = rcosf r
y = rsinf 5 y
r2 = x2 4 y2 X  Re

zZ = x+yi = rcosd + risinf = r(cosf + isinf)

A complex number written in the form z = r(cos6@ + isin®) is in polar form.
r is the modulus (magnitude) of z, this is written as Mod z or |z|.
0 is the argument (amplitude) of z, this is written as arg(z).

r= Izl = 7 T 57 and 6 = arg(2) = tan (%)

Note that we prefer the value of 8 to be —m < 8 < & if working in radians
or —180 < 8 < 180 if working in degrees. We can add or subtract
multiples of 2w or 360 to 8 and obtain the same complex number.

An Argand diagram is useful for helping to find the argument.

Examples: Write in polar form

a z=1+4i
Izl = VIZ+ 12 =2 m (1,1)
—tan-1( =T o
arg(z) = tan (1) = or 45 1

v

zZ = ﬁ(cosg + isin%)
or z = V2(cos45° + isin45°)
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b) z=-1+41i

I
Izl = V(=D +12 =2 (-1,1 "
-1 ( L), 3"
arg(z) = tan (_1) =T— = 1 5
z=+2 (cos%ﬂ + isin %n) E 1 Re
c) z=-—/3-i m 1
2l = (VB2 + (-1 = 2
1 51 : \/§ >
— -1(_— —_ ) R
arg(z) = tan (—\/§) 6 1 € ©
Remember -t <0 <m
-5 . ., —5m (_\/5’-1)
z = 2(cos — + isin—)
6 6
d z=1-i Im ¢
2| = JTZ+ (D)2 = V2
_ -1(Z1\_ -7 1
arg(z) = tan ( - ) =, —
zZ = \/E(COS_TR + isin _Tn) 1

Note: r(cosf — isin8) = r(cos(—80) + isin(—60))

Exercise 5: Write in polar form

a) 1++3i b)2-2i c) —V2 —2i d) 2i e) 3

f) —V/3 + i g) —3i h) -5 ) =3 = 3i
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Multiplication and division in polar form

z, = ry(cosa + isina) z, = 1,(cosfB + isinf)
Z1Zy = ry1ry(cos(a + B) + isin(a + B))

2—12 = %(cos(a — B) + isin(a — B))

Exercise 6;:

1

Find the product, z, z,, of the following sets of complex numbers
a)z; =2 [cos G) + isin (n)] zZ, =3 [cos (Z) + isin (D]

b) z; =2 [cos (n) + ism( )] Z, =2 [cos( ) + isin (3)]
C)z; =3 [cos( ) + lsm( )] Z, =2 [cos( ) + isin (Sf)]

d) z, = [cos (is) + isin (15) Z, =2 [cos (115 ) + is n( 3:)]
e)z; =10 [cos (5 ) + isin (5:)] z, = 10 [cos( z ) + isin (1“:”)]

Find the quotient, 2, of the following sets of complex numbers

2

a)z; =2 [cos (4) + lSlTl( )] Zy =3 [cos (D + isin (D]
b) z, =2 [cos ( ) + lSlTl( )] Z, =2 [cos (3) + isin (Z)]
C)zy =3 [cos( ) + isin (T)] Zy =2 [cos (54 ) + isin (5:)]
02 = eos () 50 ()] 22 =2[eos (22) + sn (20
e)z; =10 [cos (59 ) + isin ?n)] z, = 10 [cos (137”) + isin (137”)]

Evaluate

a) [cos( ) + lsm( )] X [cos( ) + lSlTl( )] X [cos G) + isin G)]
b) 4 [cos( ) + Lsm( )] X 2 [cos( ) + isin (%)]
c) 20 [cos( ) + lSlTl( )] [cos( ) + isin (g)]
d) [cos( ) + lSlTL( )] +3 [cos( ) + isin (g)]

M:n
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De Moirve’s Theorem

(cosB + isinf)" = cos(nf) + isin(nh) true foralln € R
Proof by induction, which we will explore later, will allow us to prove this
result for n € N. A proof for all n € R is beyond the scope of the course.

This extends to

(r(cos@ + isin8))" = r™(cos(nf) + isin(nh))

Examples

N|R

1 Evaluate [4 (cosg + isin g)]

1

1
[4 (cos T +isin E)]z = 42 (cos T +isin E)
3 3 6 6

V3

= +2(2+3i

2

=+3+4+ior —V3—i

2 Expressz=(1-1i)” inthe form x + iy

1—i =2 |cos (=) + isin ()]

zZ= \/77 [cos (_Tn) + isin (_Tn)r
= 8v2 :cos (—Tm) + isin (—Tm)]
=8v2 :cos G) + isin G)]
=8v2|=+—| =8+8i

V2 V2
Alternative method

z=[1-D*PA -1
=1-2i+i%)31 -1
= (=20)°(1 - 1)
= —8i3(1 1)
= 8 + 8i or use binomial theorem
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3  Express sin56 in terms of sinf
By De Moirve’s Theorem
(cosB + isin@)> = cos(50) + isin(56)
By the Binomial Theorem
(cosO + isinf)°>
= c0s°0 + 5icos*0sin0 + 10i*cos30sin?0 + 10i3cos?Osin36
+ 5i*cosOsin*6 + i°sin°6
= c0s°0 + 5icos*0sind — 10cos30sin?6 — 10icos?Hsin36 + 5cosOsin*0
— isin®0
Equating the imaginary parts:
sin50 = 5cos*0sind — 10cos?0sin30 — sin°0
= 5(1 — sin?6)?sinf — 10(1 — sin?6)sin30 — sin°0
= 5sinf — 20sin30 + 16sin°6

4 If z = cosf + isin@, show that
a) z* + zik = 2cosk@ b) zF — zik = 2isink@
a) z* + zik = (cosO + isinf)* + (cosf + isinf) ¥
= coskO + isink8 + cos(—k0) + isin(—k8)
= coskO + isinkf + coskO — isinkf

= 2cosk0@

b) z* — — = (cos6 + isin0)* — (cosO + isinB)~*
= coskO + isinkd — cos(—k60) — isin(—k8)
= coskB + isink@ — coskf + isink6

= 2isink@

You must know these results:

z¥ + = = 2cosk6
zZ

z¥ + — = 2cosk6
VA
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5  Express cos38 in terms of cosd and cos36

2cos0 =z + i where z = cosf + isiné

(2c0s0)3 = (z + §)3

_ 34 9,2(1 12, (1)°
=22 +322(;) +32(;) +(;)
=23 43242+
VA VA
_ .3, 1 1
=z +Zg+3(z+z)
8c0s30 = 2co0s36 + 6¢cosb
cos30 = %(ZCOS39 + 6c0s8)

= %(COS?)H + 3cosH)

6  Assuming the De Moivre is true for natural numbers, prove it holds
true for integers

Consider (cos@ +isin8)™* keN
1

(cosB+isin)k
1

coskO+isinkO
coskO—isink@

(coskB+isinkB)(coskf—isinkf)
__ cos(—kB)+isin(—k0)
"~ cos2kB+sin2k6
= cos(—k8) + isin(—k0)
Therefore, De Moivre holds for integers.

Exercise 7
1  Simplify

a) [cos (2—2) + isin (E—Z)r b) [cos (2?”) + isin (2?”)]5

. 5
) EZ?;Z:ZE?L d) [cosO + isinB]®[cosO — isinO]*

(note the negative)
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2 z=1++3i
Find z7 in polar form with argument in the range —w < 8 < m, then
express it in the form a + ib.

3  Simplify [cos125° + isin125°]*[cos15° + isin15°]3

4 By considering [cos8 + isin8]3 show that
a) cos30 = 4cos30 — 3cosh b) sin36 = 3sinf — 4sin30

5 By considering z = cosf + isinf and expanding (z + §)4 show that

cos*0 = %[cos49 + 4c0s26 + 3]

5
6 By considering z = cosf + isinf and expanding (z — i) show that
sin°@ = 1—16 [sin58 — 5sin36 + 10sind]

7 By considering [cos8 + isin8]* show that
cos40 = 8cos*0 — 8cos?0 + 1
Hence show that

cos*0 = % [cos48 + 4cos260 + 3]
Also show that
sin40 = 4sinf(2cos30 — cosH)
8  Show that cos®8 = 3—12 (cos66 + 6cos40 + 15c0s20 + 10)

More Equations

Examples:
1  Solve z3 = —8i i.e. find the cube root of —8i.

In polar form —8i = 8 [Cos (—77:) + isin (_7”)]

—Tr .. v [A

z3=8 [cos (7) + isin (7)]

1 1
z =83 [cos (f) + isin (f)r
This will only give one solution and we know from the Fundamental
Theorem of Algebra that there are three roots.
Adding multiples of 2 to the argument of a complex number results
in the same number so we can write
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—8i =8 [cos (—771 + an) + isin (_7” + 2kn)]

1

Soz = 8§ [cos (_7” + an) + isin (_7” + 2kn)]3

=2 [cos (_Tjr + Zan) + isin (_?” + ?)] k=012
k =0: Z=2:COS(_?n)+iSiTl(_—6n)]=\/§—l’
k=1: Z=2:cos(_?n+2?n)+isin(_—:+2?n)]
=2 :cos (g) + isin (g)] = 2i
k = 2: z=2 cos(_?n+4?n)+isin(_—:+%n)]
= 2|cos (ZF) + isin (2)| = —V3 - i

The solutions to z3 = —8i are z = V3 — i, 2i, —/3 —i.
Find the fifth roots of unity i.e. solve z> = 1

1 = cos0 + isin0
1
z = (cos2km + isin2km)s
= coS (?) + isin (Zan) k=0,12734
z = cos0 + isin0
— 052 4 isin 2"
z = cos— tisin—
am . . 4m
Z = cos? + lsm?

6r . . 6bm
zZ= cos?+ Isin— = cos
8w . . 8m —2T .
Z =C0s— + Isin— = cos (T) + Lsm(
The five fifth roots of unity are shown
in the Argand Diagram. The roots are
equally spaced by 2?” radians and

lie on the circumference of a circle
of radius 1.
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Generalisation
The n, nth roots of unity (solutions to z" = 1) can be represented by n
equally spaced points on a circle of radius one unit, including the point

(1,0). The spacing will be 27”

Exercise 8:

1 Solve a)z3=4+4/3i b) z3 =
c)z'=-2+2i d)z6 =1
e)zt=1 f)yz>=1i

2 lllustrate the solutions to b) and d) on an Argand diagram.

Geometric Interpretation of Equations and Inequations

The solution set of complex equations and inequations can be
represented by sets of points in an Argand diagram

eglzl=a, |lz—al=b, |z—1]=|z—il|, |z—a| >b
Examples:
1 Solve|z| =1

Ifz=x+yiand|z]| =1thenx?2+y2=1 Im 4

N

ie.x?2+y?=1
All the points representing complex numbers

z with modulus 1 lie on the circumference of Re
a circle, centre the origin and radius 1.
A

2 Solve|z—1|=2
fz=x+yithenz—1=(x—-1) + yi.

Therefore |z — 1| = 2 becomes -1
JG-DTHy=2 "\

e.(x—1*+y*=4 (1,0) ] Re
All points representing complex numbers z
for which |z — 1] = 2 lie on the circumference
of a circle, centre (1,0) and radius 2.

Im
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3 Solve |z -2| = |z + 2i]
fz=x+yithenz—2=(x—-2)+yi

and z + 2i = x + (y + 2)i. i
Therefore |z — 2| = |z + 2i| becomes
V& =22 +y2 = [x2+ (y + 2)° Z e
(x —2)2+y? =x%+ (y + 2)* i
x2—4x+4+y =x*+y*+4y+4 y=X
y = —x

Since 2 is represented by (2,0) and -2i is represented (0,-2), all
points representing complex numbers z for which |z — 2| = |z + 2i]
lie on the perpendicular bisector of the line joining (2,0) and (0,-2).
The lineis y = —x.

4 Solve |z—-2| >4
Ifz=x+yithenz—-2=(x—2)+ yi.
Therefore |z — 2| > 4 becomes

|m A
JEx—2)2+y2>4
i 2 2 z+2
Le. (x —2)+y*>16 4>\
All points representing complex numbers R
z for which |z — 2| > 4 lie outside the (-2,0) / Re

circumference of a circle, centre (-2,0)
and radius 4.

Generalisation
|z — (a + bi)| = c will represent a circle with centre (a, b), radius c.
|z — (a + bi)| = |z — (c + di)| will represent the perpendicular bisector to

the line joining (a, b) to (c, d).

Exercise 9: Find the set of points z where
a) |z| =2 b) |z—3| =5 c) |z+ 3| = |z — 4i]

d)|z—-2]>3 e) lz—@B+2)|=4 f) |z—1|<4
9)lz—2|=|z+1—i]
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Answers
Partial Fractions

Exercise 1
—2x—6 2 84—16x 3 2, x%-x—-1
a)x+3+xz+2 b) 5x° —4x + 21 + =, ) x>+ x +x2(x_1)
Exercise 2
1 3 3 5 4 3 2 4 2 3 1 64
la) S+ 5150 o s Dot it St D=3+t
Exercise 3
1 2 4 2 1 5 2 1 3 3 2 1
)t e P ittt e O m mtoy Vst oo

23 +x2+2 42—
X X

x—1
Exercise 4
3 3x-2 4 3x-2 5 2x+7 -2 4 26—5x 1 5x
A S e Vgt en st on Vs T o 9%t 0 e
2 1
1+ — + G2
Exercise 5
2 1 1 2 5 5 1 2 5 1 1 1
a) 2x-3  x+2 ) 2x-1  x+3 (x+3)2 ) 2(x+1) - 2(x-1) ) x-1 2(2x-1)  2(2x-1)2 e) 1+ x—3  2x+5
xX—5 5 2 3—x 2 3 5 1 . 3 4 1-2x
f) 2+ x2+4 t x—3 g) 1+2x t x2—x+2 h) 1+x + (1+x)2 - (1+4x)3 T x—2 I) x+3 T (x+3)2  x2+4

Binomial Theorem

Ex1a)x® +15x° +75x+125 b)a’ +8a’+24a”* +32a+16 c)m°—15m* +90m® —270m?* +405m —243
d)625-500y +150y? —20y° + y*  €)8x® +36x*+54x+27 f)81p* +108p> +54p? +12p+1

g) 32x° +80x"y +80x%y? + 40x%y® +10xy* +y* h)8k*® —60k* +150k —125

)81x* —216x%y +216x°y? —96xy°® +16y* [)x° +6x* +12x* +8 k) y'* —8y° +24y°® —32y* +16

I)x3+3x+§+i3 m)x4+8x2+24+¥+£ n)8x3—36x+%—2—z
X X x> X X X
0) x'* —10x" +40x* —80x+§—¥ p)16x°% +32x° +24x* +8x* +1 () 27x° —54x" +48x”* -8
x> X
8 5 2 4
N16X2—64x° +96x* —64+ 10 )x*-3xt+ o L X X g0 AV YV
X X X y' oy X X

Ex2 1)a) 35 b)120 2)1,5,10,10,5,1 3) Proof

14 20 ny 11 21
Ex31)a)(4) b)(s) c)(o)—l 2) Proof 3)a)(5) b)(7) 4) Proof
Ex4 1)a) 27+27x+9x?+x3 b) 125+150x+60x2+8%x3 ) 16-32x+24x2-8x3+x*
d) x5+10x%y+40x3y?+80x2y3+80xy*+32y°  e) 1+9x+27x%+27x3

f) 16x%-96x3y+216x2y2-216xy3+81y* @) 32x5 + 240x3 + 720x + =2 4 810 4 243

—~ Tt =
X X X

h) x® — 205 + 150x2 — 22 + 22

2)a) 286.9151 b) 205.11149 3)180.109 4)1.04060

Ex51)a) 7 b)5 2)720x3 3)3 4)3041280
5) -816,18564 6) -3240a’x® 7) 240 8)108 9)5 10)-35 11)24 12) 70 13)114) 673596 15)=

77



Differentiation

Exercise 1
a) 3x2 b) 2x+2 c) 6x+4
Exercise 2
1a) 3x2-2x+5 b) 6x+3;i2 C)%—ﬁ—g d)iﬁ—%—% e) —%%—i4 f) —2 : 42 xz
X
453 . 3 —4 1
g) 8(4x +5) h)—— i)—— ) D) k) -3sinxcos2x ) Co_szx

(2x%-3)2 (4—x2)2 (x3+3x)3
2y=14x-19 3 Mintp at (1,0) Max tp at (-1,4).
Exercise 3

1a) (6x+12)(x?+4x-5)? b)

) 22T gy 3 6) 4cosxsinx f) -6sin2xcos®2x

2\/ 3+5 Vx (4-x2)7

2 Proofs
Exercise 4
a) 2x(x-3)(2x-2) b) (10x+3)(2x+3)? ¢) 22 d) ("‘3)23;"‘3) e) 2(x+1)(3x+1)(x-1)3
)sz/ZCTf) g) sinx +xcosx h) x(23|nx+xcosx) I) COS2X ]) 2C0S2XC0S5x-55iN2Xxsin5x
K) -2xsinx?sin3x+3c0sx2coSXsin?x
Exercise 5

x%+6x x—8 4(2x+1) 2x(x—4) 3(1-2x)? 3x+4
1a) (x+3)2 b) X3 ) (1-x d) (x—2)2 ) - x% ) _2x3\/x+1

2/3 compare with other answers 4 proof

Exercise 6
a) 6tan?2xsec?2x b) 8cosec*xcotx ) secx(tan2x+seczx) d) x(Zcotx-xcoseczx)

&) = f)-(x+Dex g) T 1) ZEMD ) X j) o=2x*(1 — 4x%) K) 4

1- x2 )(ex+e—x)2

+2 (x+2)2 (inx)? 2+1
Exercise 7
- aty _ ajax 4 _ _nax n _ —(n-1)!
1 6x+10 2 -27cos3x 3 L ae - a'e 4 f"(x) = oo

5 Min tp at (1,0) Max tp at (-1,4)

Exercise 8
1 1
a) 2/x(1—x) b) 2(1+x)Vx

-1 2x .1 -1 1
C) tan™'x (2) + 44x2 6) sin-x f) Vx—x2 g) (x+1)V/x

) 1 I) 2 ) 2 )secxtanx_ sinx ) m) e* n)
1+x2 7 (1+3x2)V1-x2 J (1-x2)V1-5x2 1+sec?x  cos?x+1 7/ V1- x2 1+e2% Vi-x2

Exercise 9

1 2(4x+1 1-3x%y-y3 _
1a)§ b) 1 C) —% d) 3&;_1; ) 1+3zy32/+i3 f) cotxcoty Q) —% h) ye™ — ylny
2a)3x—4y=2 b)5x +8y =27 c)2x —y = 3 3—% 4-7

2y y 8 6y(8x—2) 56 .
5a) — b) o 1)2 C)——53 d) 575 Gy23) 6 2,—? 7 (-1,3) min (0,0) max

ExerC|se 10
1% 2—-28 32m 4a)proof b)-0.0125cm/s 5a) proof b) 3.75 6 11.8
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Exercise 11
2 _ i sinx l_z
a) 10*n10 b) 2*" x 2xIn2 c) —x*(Inx + 1) d) xSt (cosxlnx + T) e) xx “(1—Ilnx)

4 2 _1)\4 2 —
f) 2x"*1nx g) (Inx)* [ln(lnx) + i] h) (lnx) — [In(inx) + 1] i) = (27x+530) ) I Gx) (42 +5%-1)
Inx 2(3x+5)2 (x+1)
Exercise 12
2t+1 (1+1)? 3(t+1)2 (t+6)(1+1)? 3 .
la) —— preE b) ——cot@ c) — ey ) — P2 )m f) ———— (t43)? g) - cosecf h) —Esme

j) SOSLHSINE gy €Ot oay x+2y=2ct b) (3t2-1)x-2ty=at2(t2+3) c) (2+1)x-(>-1)y=2at d) xsech-ytang=1

cost—sint sint—1
Exercise 13
t 1

13 345 L
1a) 2t ! 4t b 1+t 2(14¢)3

cosf+1 —1-cosf b3 3m 8 16 16
€) sin@ ’ 2sin36(2cosf—1) 2 (;' 1)' (7'_1) 3a) Max sp (g'?ﬁ) Min sp (_ Y 3)
b) Max sp (16,9) c) Max sp (2,4), Min sp (10,0) 4 Proof

Exercise 14

1V13,v5 217 32 4.V733 5520 65V17
7 Max of 4 at (0,3) and (10,-3). Min of 3 at (4,0) and (-4,0)

3 3
C) - cott, —Ecosec3t d) —%cosecg,—lcosecg’e

Sequences and Series

Exercise 1

la)u, =8n—-25, u;g =147 b)u, =11-3n, uys =—-34 ¢c)u, =7.5-0.5n, u;, = 1.5
2a) n=23 b) n=13 c) n=13

3a) a=4, d=6, S;, = 444 b) a=15, d=-2, S,;, = —80 c) a=20, d=-7, S;4 = —520

4a) a=13, d=2, S;, = 220 b) a=33, d=-5, S, = —72 ¢) a=-5, d=6, S;5 = 555

5 a=-15, d=6, S3o = 2160 6a=0, =7, u;p =— 7n=15

8 d=3, u;p =30 9 39 terms

Exercise 2

la)r=3 b)r=-cr==dr=3er=-fr=-gr=-1hr=-2
2a)1,3,9,27 b)3,-6,12,-24 )6,3,3,>

3a)u, =2"1 ug =16 b)u, =2x3"1 u, =486 c)u, =4x3"1 u, =972
d) w, = 2 x 101, ug = 20000 €)u, = (=2)™ 1, ug = =32 fu, = 6 x (%)n_l, U, = =

32
1

1 n-1 n-3
4a)u, =21 b)u, =3x2"! Q)u, =2%x(=3)"1 d)u, =9 x (5) - (_)

3
) w=ax ()" = ()7 pu =t ()T =)
5a)r = +2, us = 96 b) r =2, ug = 800 c)r=_§, Us =

62) 255 b) 728 )22 d) 122 e)12 )12 g) = p

1-x 1+y
Exercise 3
a)r=§,5w=§ b) r = 2, S, does not exist c)r—i S0 =73 d)r=%,5m=16
e)r = —5,S,, does not exist f)r = ——, S, =2 g)r=—=,S, =2 h)r=2,5, =3
10 19 2 3 3
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Exercise 4

6
a)1——+——’;—I b)x+ x3 C)x ++ Zx3 d)x——x ;x3—ix4

e)1+3x+ x? +2 ~x +27 * )1 —2x —2x% — 4x3 — 8x* — 16x° g)3x—§x3+%x5
I)2x+—x +2x )ln2+—x——x + =3
3 15 2" 8 24
Exercise5:a) 1+ x+-x2 —2x* b)x —2x2 +=x3 ——x* ) x+x% +-x3 — =x5
2 8 2 6 12 3 30
d) ln2+%x+§x2+ix4

192

Complex Numbers
Ex1l1a)-4 b)-9 c)-16 d) -4 e)-9 2a)3—2ib)5+3ic)8 2i d)5i3a)+2i b) +3i c) +V3i
da)1+i b)2+i c)2+31 d-1+i e) +i f)—-3+i g) +—1 h) —1 4 Proofs 5a)1 b)

+1,+i ©) 2,—5 + 71 d)+2i, £3i

Ex21a)5+8i b)6—3ic)5—3id)6e)2if2ag)2bi 2)id=—i,i*=1,i5=ii%=-1,i’ =—i,
=1,i° =14,i'® = -1, 3a) -8 b) 2 ¢) -2+3i d) -4-i e) 5+5i f) 27+8i g) 13 h) a?+b?

i) (ac-bd)+(bc+ad)i j) (actbd)+(bc-ad)i k) -2+2i I) -4 m) 16-16i n) 16 0) cos2t+isin2t

2_p2 —
p) Cos(A+B)+isin(A+B) 4a) 1-4i b)Z—Zi ¢)+2i d) =+ =i €) o+ i f) S 4 2

l
) a?+b? = a?+b? ) c2+d? = c?+d?

g) 3+4i h) cosA-isinA i) cos2A+isin2A 5 x2-2x+2 and x2-2x+2=0 6a) +(—2+1i) b) +(5— 2i)
c) +(1+1i) d)+(1+5i)

Ex3 la) Z[COS( )+lsm( )] b) 2\/_[cos( )+Lsm(4 )] C) Z[COS( " )+lsm( zn)]

d) 2 [cos( ) + lsm( )] e) 3[cos(0) + isin(0)] f) 2 [cos( ) + Lsm( )] g)3 [cos( ) +i sm( 2")]
h) 5[cos(m) + i sin(m)] i) 3v2 [cos( ) + lsm( in)]

28)(i) 11| = 6 |z] = 2 |z12,] = 12 (i) arg(z,)=5" arg(z,)== arg(zz,)= =

0)() |21 = 3 |2,] = 2 |z42,] = 6 (i) arg(z)=% arg(z,)=Z arg(zyz;)="

Therefore |z,z,| = |z1| X |z,| arg(z,z,)= arg(z,)+ arg(z,)

3a) (i) Find |z] = 6 |2,/ =2 |2 =3 (i) Find arg(z;)= 2 arg(z;) == arg(i—;): i
3n

A

Z1

b) () Find |z;] =3 |zo| =2 |7 =2 (i) Find arg(z;)= = arg(z;) == arg(z—:):

z1| _ |zl Z1) = -
Therefore % =i arg(z) = arg(z,)-arg(z,)

4a)(i) |1z| = V2, liz| = V2 (i) arg(z)= %, arg(iz)= %” b)() |z| = 2, |iz| = 2 (ii) arg(z)= % arg(iz):_?"
Therefore |iz| = |z| and arg(iz)= arg(z)+§ or multiplying by i rotates z by % about the origin

5a)(i) |z| = V2, |2] = VZ (i) arg(2)="1, arg(z)== b)() |zl = 2, 12| = 2 (i) arg(z)= =", arg(z)= =
Therefore |z| = |z| and arg(2)= -arg(z) or Z is a reflection of z in the real axis.

6a)(i) zz =2 (i) |zz| =2 arg(zz) =0 b)(i) zz=4 (ii) |zz]| =4 arg(z2) =0

Therefore zz is always real, |zz| = |z|? and arg(zz) =0

Ex4a) —4,2+i b)1+i,—1+2i ¢)—2+3i,2++6i d) —g,Zii e)—2,1+2i f)=3, 3+i
g)—1+i2+i
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Ex5 la) 2 [cos( )+ Lsm( )] b) 2\/_[cos( )+ Lsm(4 )] C) 2 [cos( ” )+ Lsm( z”)]

d) 2 [cos( ) + lSlIl( )] e) 3[cos(0) + isin(0)] f) 2 [cos( ) + Lsm( )] 0)3 [cos( ) +i sm( 2”)]
h) 5[cos(m) + i sin(m)] i) 3v2 [cos( ) + Lsm( z")]

2a)(i) 21| = 6 |z] = 2 |z12,| = 12 (i) arg(z,)== arg(z;)== arg(z;z;)=>

b)(i) 121] = 3 |22] = 2 |z12,] = 6 (ii) arg(z,)=3 arg(z,)=— arg(z;z,)=7

Therefore |z,z,| = |z,| X |z,| arg(z,z,)= arg(z,)+ arg(z,)

3a) (i) Find |z, = 6 |z, = 2 — =3 (i) Find arg(z,)=2" arg(z,) == arg(z—l):g

Z1

37'[

b) (i) Find |z,| = 3 |z, = 2 2 (i) Find arg(z,)=> arg(z,) == arg(Z ) =

|Z1|

2 =2 ag(2) = arg(zo-arg(zZ)

4a)(i) |z| = V2, liz| = V2 (i) arg(z)= %, arg(iz)= %" b)(i) |z| = 2, |iz] = 2 (ii) arg(z)= _%” arg(iz):_?”
Therefore |iz| = |z| and arg(iz)= arg(z)+§ or multiplying by i rotates z by % about the origin

5a)() |zl = V2, 121 = V2 (i) arg(2)=7, arg(z)==" b)() |z| =2, |2| = 2 (i) arg(2)= =", arg(z)= ="
Therefore |z| = |z| and arg(2)= -arg(z) or zZ is a reflection of z in the real axis.

6a)(i) zz =2 (ii) |zz]| =2 arg(zz) =0 b)() zz=4 (i) |zz| =4 arg(zz) =0
Therefore zz is always real, |zz| = |z|? and arg(zz) =0

Ex6 1la) 6 [cos( ) +i sm( )] b) 2v/2 [cos( ) + Lsm( )] C) 6[cos0 + isin0] d) cosm + isinm
e) 100[cos 0 + isin0] 2a)-= [cos( ) + lsm( )] b)—[cos( - ) + lsm( :)]

0 feos () st ()] 94 eo (1) i ()] e (%) i (%)
saheos () i (2) 18 [co (5) + (5 (2] €20 (2) 5 ()] 02 os () 1 )

Ex7 la)cos( )+Lsn(56”)=—£+—i b) cos2m +isin2mr =1 C)cosf +isinf

Therefore |2

d) cos46 + isin46 2) 128 [cos( ) + lsm( )] = 64 — i64V3 3) cos175° + isin175°

4) (cos@ + isinB)3 = cos 30 + isin 30

(cos8 +isin0)3 = cos30 + 3cos?0(isinf) + 3cosO(isinf)? + (isind)?3

So cos 30 =cos30 — 3cosfsin*6 and sin 30 = 3cos?@sinf — sin36
Now substitute sin?6 = 1 — cos?6 and cos?0 =1 —sin? etc

n\* 4 Nt 3 (1 2 (1\? 1\ | 1\*

5) (z + ;) = (2cosH) (z + ;) =z"+4z (;) + 6z (;) + 4z (;) + (;)
=(zt+5)+4(22+5)+6

16c0s*0 = 2c0s46 + 8cos20 + 6 etc

1\° . s 1\° 4 (-1 5 (-1\3 2 (-1)\3 -1\*  -1\8
6) (z — ;) = (2isind) (z — ;) =2z>+5z (—) + 10z (—) + 10z (7) + 5z (7) + (7)

s _ L _1 _1
(z )+5(z )+10(z Z)

32isinf = 2isin50 — 10isin36 + 20isind
7) (cos 8 + isin0)* = cos 46 + i sin 40
(cos O + isin0)* = cos*0 + 4cos36(isinf) + 6c0s20(isind)? + 4cosO(isinf)3 + (isinf)*
cos 40 = 8 cos*0 — 8cos?6 + 1
8cos*0 = cos 46 + 8cos?6H — 1 then substitute cos?6 = %(1 + cos26) to obtain result
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ExBa) 2 [cos (5) + i5in (5)], 2 cos () + 15in ()] 2[cos (57) + £sin (57}

9
b) 1,—%+gi, —%—gi C) 8% [cos(i—:+2’%ﬂ) + isin(i—z ZIan)] k=01,23
d) 1,—1, 7(1£V3i), 5 (-1 +V3i) e)g(lii),g(—ui)
f) cos (% + Zan) + isin (% + Zan) k=0,1,2,3,4

Ex9 a) x?+y?=4, a circle centre O, radius 2

b) (x-3)?+y?=25, a circle centre (3,0), radius 5

c) 6x-8y=7, the perpendicular bisector of (-3,0) and (0,4)
d) (x-2)? +y>>9, outside the circle centre (2,0), radius 3

e) (x-3)?+(y-2)°=16, a circle of centre (3,2), radius 4

f) (x-1)?+y?<16, on or inside the circle centre (1,0), radius 4
g) y=3x-1, the perpendicular bisector of (2,0) and (-1,1)
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