X100/13/01

NATIONAL TUESDAY, 6 MAY QUALIFICATIONS 1.00 PM - 4.00 PM 2014 MATHEMATICS ADVANCED HIGHER

Read carefully

- 1 Calculators may be used in this paper.
- 2 Candidates should answer **all** questions.
- 3 Full credit will be given only where the solution contains appropriate working.

Answer all the questions

1. (*a*) Given

$$f\left(x\right) = \frac{x^2 - 1}{x^2 + 1}$$

obtain f'(x) and simplify your answer.

- (b) Differentiate $y = \tan^{-1}(3x^2)$.
- 2. Write down and simplify the general term in the expression $\left(\frac{2}{x} + \frac{1}{4x^2}\right)^{10}$.

Hence, or otherwise, obtain the term in $\frac{1}{x^{13}}$.

3. Use Gaussian elimination on the system of equations below to give an expression for z in terms of λ .

x + y + z = 2 $4x + 3y - \lambda z = 4$ 5x + 6y + 8z = 11

For what values of λ does this system have a solution? Determine the solution to this system of equations when $\lambda = 2$.

- 4. Given $x = \ln(1 + t^2)$, $y = \ln(1 + 2t^2)$ use parametric differentiation to find $\frac{dy}{dx}$ in terms of t.
- 5. Three vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} are given by \boldsymbol{u} , \boldsymbol{v} and \boldsymbol{w} where

$$u = 5i + 13j, v = 2i + j + 3k, w = i + 4j - k.$$

Calculate $\boldsymbol{u}.(\boldsymbol{v} \times \boldsymbol{w})$.

Interpret your result geometrically.

3

3

5

6

3

3

1

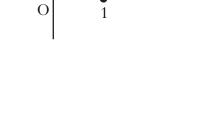
6. Given $e^y = x^3 \cos^2 x$, x > 0, show that

$$\frac{dy}{dx} = \frac{a}{x} + b \tan x$$
, for some constants *a* and *b*.

State the values of *a* and *b*.

7. Given A is the matrix $\begin{pmatrix} 2 & a \\ 0 & 1 \end{pmatrix}$,

prove by induction that


$$A^{n} = \begin{pmatrix} 2^{n} & a(2^{n} - 1) \\ 0 & 1 \end{pmatrix} , n \ge 1.$$
 4

8. Find the solution y = f(x) to the differential equation

$$4\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 0$$

given that
$$y = 4$$
 and $\frac{dy}{dx} = 3$ when $x = 0$. 6

- 9. Give the first three non-zero terms of the Maclaurin series for cos3x.
 2 Write down the first four terms of the Maclaurin series for e^{2x}.
 1 Hence, or otherwise, determine the Maclaurin series for e^{2x}cos3x
 up to, and including, the term in x³.
 3
- 10. A semi-circle with centre (1, 0) and radius 2, lies on the x-axis as shown.Find the volume of the solid of revolution formed when the shaded region is rotated completely about the x-axis.

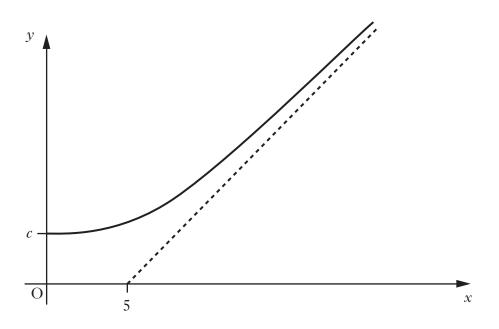
 \mathcal{X}

3

5

4

1


1

10

11. The function f(x) is defined for all $x \ge 0$.

The graph of y = f(x) intersects the *y*-axis at (0, c), where $0 \le c \le 5$.

The graph of the function and its asymptote, y = x - 5, are shown below.

- (a) Copy the above diagram.
 On the same diagram, sketch the graph of y = f⁻¹(x).
 Clearly show any points of intersection and any asymptotes.
- (b) What is the equation of the asymptote of the graph of y = f(x + 2)?
- (c) Why does your diagram show that the equation x = f(f(x)) has at least one solution?
- **12.** Use the substitution $x = \tan \theta$ to determine the exact value of

$$\int_{0}^{1} \frac{dx}{\left(1+x^{2}\right)^{\frac{3}{2}}} .$$
 6

13. The fuel efficiency, F, in km per litre, of a vehicle varies with its speed, s km per hour, and for a particular vehicle the relationship is thought to be

$$F = 15 + e^{x}(\sin x - \cos x - \sqrt{2})$$
, where $x = \frac{\pi(s - 40)}{80}$,

for speeds in the range $40 \le s \le 120$ km per hour.

What is the greatest and least efficiency over the range and at what speeds do they occur?

4

6

4

14. (a) Given the series $1 + r + r^2 + r^3 + \ldots$, write down the sum to infinity when |r| < 1.

Hence obtain an infinite geometric series for $\frac{1}{2-3r}$. For what values of *r* is this series valid?

(b) Express $\frac{1}{3r^2 - 5r + 2}$ in partial fractions.

Hence, or otherwise, determine the first three terms of an infinite series

for
$$\frac{1}{3r^2 - 5r + 2}$$

For what values of *r* does the series converge?

15. (*a*) Use integration by parts to obtain an expression for

$$\int e^x \cos x \, dx \, . \tag{4}$$

(b) Similarly, given $I_n = \int e^x \cos nx \, dx$ where $n \neq 0$, obtain an expression for I_n .

(c) Hence evaluate
$$\int_0^{\frac{\pi}{2}} e^x \cos 8x \, dx$$
. 2

- 16. (a) Express -1 as a complex number in polar form and hence determine the
solutions to the equation $z^4 + 1 = 0$.3
 - (b) Write down the four solutions to the equation $z^4 1 = 0$. 2
 - (c) Plot the solutions of both equations on an Argand diagram. 1
 - (d) Show that the solutions of z⁴ + 1 = 0 and the solutions of z⁴ 1 = 0 are also solutions of the equation z⁸ 1 = 0.
 - (e) Hence identify all the solutions to the equation

$$z^6 + z^4 + z^2 + 1 = 0.$$
 2

[END OF QUESTION PAPER]

Page five

[BLANK PAGE]

[BLANK PAGE]

[BLANK PAGE]