X100/13/01

NATIONAL	TUESDAY, 6MAY	MATHEMATICS
QUALIFICATIONS	$1.00 \mathrm{PM}-4.00 \mathrm{PM}$	ADVANCED HIGHER
2014		ADAN

Read carefully

1 Calculators may be used in this paper.
2 Candidates should answer all questions.
3 Full credit will be given only where the solution contains appropriate working.

Answer all the questions

1. (a) Given

$$
f(x)=\frac{x^{2}-1}{x^{2}+1}
$$

obtain $f^{\prime}(x)$ and simplify your answer.
(b) Differentiate $y=\tan ^{-1}\left(3 x^{2}\right)$.
2. Write down and simplify the general term in the expression $\left(\frac{2}{x}+\frac{1}{4 x^{2}}\right)^{10}$. Hence, or otherwise, obtain the term in $\frac{1}{x^{13}}$.
3. Use Gaussian elimination on the system of equations below to give an expression for z in terms of λ.

$$
\begin{array}{r}
x+y+z=2 \\
4 x+3 y-\lambda z=4 \\
5 x+6 y+8 z=11
\end{array}
$$

For what values of λ does this system have a solution?
Determine the solution to this system of equations when $\lambda=2$.
4. Given $x=\ln \left(1+t^{2}\right), y=\ln \left(1+2 t^{2}\right)$ use parametric differentiation to find $\frac{d y}{d x}$ in terms of t.
5. Three vectors $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ are given by $\boldsymbol{u}, \boldsymbol{v}$ and \boldsymbol{w} where

$$
\boldsymbol{u}=5 \boldsymbol{i}+13 \boldsymbol{j}, \boldsymbol{v}=2 \boldsymbol{i}+\boldsymbol{j}+3 \boldsymbol{k}, w=\boldsymbol{i}+4 \boldsymbol{j}-\boldsymbol{k}
$$

Calculate $\boldsymbol{u} .(\boldsymbol{v} \times \boldsymbol{w})$.
Interpret your result geometrically.
6. Given $e^{y}=x^{3} \cos ^{2} x, x>0$, show that

$$
\frac{d y}{d x}=\frac{a}{x}+b \tan x, \text { for some constants } a \text { and } b
$$

State the values of a and b.
7. Given A is the matrix $\left(\begin{array}{ll}2 & a \\ 0 & 1\end{array}\right)$, prove by induction that

$$
A^{n}=\left(\begin{array}{cc}
2^{n} & a\left(2^{n}-1\right) \\
0 & 1
\end{array}\right), n \geq 1
$$

8. Find the solution $y=f(x)$ to the differential equation

$$
4 \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+y=0
$$

given that $y=4$ and $\frac{d y}{d x}=3$ when $x=0$.
9. Give the first three non-zero terms of the Maclaurin series for $\cos 3 x$.

Write down the first four terms of the Maclaurin series for $e^{2 x}$.
Hence, or otherwise, determine the Maclaurin series for $e^{2 x} \cos 3 x$ up to, and including, the term in x^{3}.
10. A semi-circle with centre $(1,0)$ and radius 2 , lies on the x-axis as shown.

Find the volume of the solid of revolution formed when the shaded region is rotated completely about the x-axis.

11. The function $f(x)$ is defined for all $x \geq 0$.

The graph of $y=f(x)$ intersects the y-axis at $(0, c)$, where $0<c<5$.
The graph of the function and its asymptote, $y=x-5$, are shown below.

(a) Copy the above diagram.

On the same diagram, sketch the graph of $y=f^{-1}(x)$.
Clearly show any points of intersection and any asymptotes.
(b) What is the equation of the asymptote of the graph of $y=f(x+2)$?
(c) Why does your diagram show that the equation $x=f(f(x))$ has at least one solution?
12. Use the substitution $x=\tan \theta$ to determine the exact value of

$$
\int_{0}^{1} \frac{d x}{\left(1+x^{2}\right)^{\frac{3}{2}}}
$$

13. The fuel efficiency, F, in km per litre, of a vehicle varies with its speed, $s \mathrm{~km}$ per hour, and for a particular vehicle the relationship is thought to be

$$
F=15+e^{x}(\sin x-\cos x-\sqrt{2}), \quad \text { where } x=\frac{\pi(s-40)}{80},
$$

for speeds in the range $40 \leq s \leq 120 \mathrm{~km}$ per hour.
What is the greatest and least efficiency over the range and at what speeds do they occur?
14. (a) Given the series $1+r+r^{2}+r^{3}+\ldots$, write down the sum to infinity when $|r|<1$.

Hence obtain an infinite geometric series for $\frac{1}{2-3 r}$.
For what values of r is this series valid?
(b) Express $\frac{1}{3 r^{2}-5 r+2}$ in partial fractions.

Hence, or otherwise, determine the first three terms of an infinite series
for $\frac{1}{3 r^{2}-5 r+2}$.
For what values of r does the series converge?
15. (a) Use integration by parts to obtain an expression for

$$
\int e^{x} \cos x d x
$$

(b) Similarly, given $I_{n}=\int e^{x} \cos n x d x$ where $n \neq 0$, obtain an expression for I_{n}.
(c) Hence evaluate $\int_{0}^{\frac{\pi}{2}} e^{x} \cos 8 x d x$.
16. (a) Express -1 as a complex number in polar form and hence determine the solutions to the equation $z^{4}+1=0$.
(b) Write down the four solutions to the equation $z^{4}-1=0$.
(c) Plot the solutions of both equations on an Argand diagram.
(d) Show that the solutions of $z^{4}+1=0$ and the solutions of $z^{4}-1=0$ are also solutions of the equation $z^{8}-1=0$.
(e) Hence identify all the solutions to the equation

$$
\begin{equation*}
z^{6}+z^{4}+z^{2}+1=0 \tag{2}
\end{equation*}
$$

[BLANK PAGE]
[BLANK PAGE]
[BLANK PAGE]

