Advanced Higher Maths 2012 Solutions © Madras College

1a
Quotient rule. So $f(x)=\frac{u^{f} v-v^{*} u}{v^{2}}$ where $u=3 x+1, u^{x}=3, v=x^{2}+1, v^{x}=2 x$.

Hence

$$
f^{x}(x)=\frac{3\left(x^{2}+1\right)-2 x(3 x+1)}{\left(x^{2}+1\right)^{2}}=\frac{-3 x^{2}-2 x+3}{\left(x^{2}+1\right)^{2}}
$$

1b Product rule. So $g^{f}(x)=u^{x} v+v^{t} u$ where $=\cos ^{2} x, \quad u^{\prime}=-2 \sin x \cos x$ $v=e^{\tan x}, \quad v^{5}=\sec ^{2} x e^{\tan x}$.

Hence $g^{x}(x)=-2 \sin x \cos x e^{\tan x}+\cos ^{2} x \sec ^{2} x e^{\tan x}=e^{\tan x}(1-\sin 2 x)$.

2
$a=2048$ and $u_{4}=a r^{3}=256$ so $\frac{a r^{3}}{a}=\frac{256}{2048}$. Hence $r^{r^{3}}=\frac{1}{8}$ and $r=\frac{1}{2}$.
Use $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$.
Thus
$4088=\frac{2048\left(1-\frac{1}{2}^{n}\right)}{1-\frac{1}{2}}$ and $\quad \frac{1^{n / 2}}{2}=1-\frac{4088}{4096}=\frac{1}{512}$
and $n=9$ by inspection or solve using logs.
3 If $(-1+2 i)$ is a root then so too is $(-1-2 i)$. Hence $(z-(1+2 i))$ and $(z-(1-2 i))$ are the factors so multiply to give $z^{2}+2 z+5$ then divide into the original polynomial to find the final factor as $z+3$.

4
$\sum_{r=1}^{9}\binom{9}{r}(2 x)^{9-r}\left(-x^{-2}\right)^{r}=\sum_{r=1}^{9}\binom{9}{r}(-2)^{9-r} x^{9-8 r} \quad$. For the term independent of x we have
$9-3 r=0$ so $r=3$.
We have $\binom{9}{\mathbf{3}}(-2)^{6}=84 \times 64=5376$.
$5 \overrightarrow{P Q}=\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)$ and $\overrightarrow{P R}=\left(\begin{array}{c}5 \\ -1 \\ 2\end{array}\right)$.
We find $\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}i & j & k \\ 3 & 1 & 4 \\ 5 & -1 & 2\end{array}\right|=6 i+14 j-8 k$
Using point P and the dot product $\left(\begin{array}{c}\mathbf{6} \\ 14 \\ \mathbf{8}\end{array}\right) \cdot\left(\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right)=10$
Equation of the plane is $6 x+14 y-8 z=10$.

6
The Maclaurin expansion for e^{x} is $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}$.
Now $1+e^{x}=2+x+\frac{x^{2}}{2!}+\frac{x^{2}}{3!}$.

$$
\begin{aligned}
\left(1+e^{x}\right)^{2} & =\left(2+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}\right) \times\left(2+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}\right) \\
& =4+4 x+3 x^{2}+\frac{5}{3} x^{3} .
\end{aligned}
$$

7a

b

8

$$
x=4 \sin \theta \text { so } d x=4 \cos \theta d \theta \text {. The limits change to } \theta=0 . \theta=\frac{\pi}{6} .
$$

$\int_{0}^{\pi / 6}\left(16\left(1-\sin ^{2} \theta\right)\right)^{\frac{1}{2}} 4 \cos \theta d \theta$
$=16 \int_{0}^{\pi / 6} \cos ^{2} \theta d \theta=\int_{0}^{\pi / 6}(8+8 \cos 2 \theta) d \theta$
This is $[8 \theta+4 \sin 2 \theta]_{a}^{\pi / 6}=\frac{4 \pi+6 \sqrt{3}}{3}$.
$A+A^{-1}=I$
so multiply both sides by A which gives $A^{2}+I=A$.
Then multiply by A again to give $A^{3}+A=A^{2}$ or $A^{3}=A^{2}-A$.
However $A^{2}-A=-I$ so $A^{3}=-I$ and so $k=-1$.

10

So $1234_{10}=3412_{7}$
11a $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
11b $\int u d v=w v-\int v d u$
$u=\sin ^{-1} x$ so $u^{x}=\frac{1}{\sqrt{1-x^{2}}} . v^{x}=\frac{x}{\sqrt{1-x^{2}}}$
so $v=-\sqrt{1-x^{2}}$.
We have $-\sqrt{1-x^{2}} \sin ^{-1} x+\int \frac{\sqrt{1-x^{2}}}{\sqrt{1-x^{2}}} d x=-\sqrt{1-x^{2}} \sin ^{-1} x+x+C$
12
We want to find $\frac{d V}{d t}=\frac{d V}{d r} \frac{d r}{d t}+\frac{d V}{d h} \frac{d h}{d t}$ where
$\frac{d r}{d t}=-0.02, \frac{d h}{d t}=0.01, \frac{d V}{d r}=2 \pi r h, \frac{d V}{d h}=\pi r^{2}$,
Hence $\quad \frac{d V}{d t}=2 \pi r h \frac{d r}{d t}+\pi r^{2} \frac{d h}{d t}=\pi r\left(2 h \frac{d r}{d t}+r \frac{d h}{d t}\right)$.

Substituting in the information given yields
$\frac{d V}{d t}=0.6 \pi(-0.08+0.006)=-0.0444 \pi \frac{m^{3}}{s}$.

13
$x=2 t+\frac{1}{2} t^{2}, x^{x}=2+t, x^{u^{x}}=1: \quad y=\frac{1}{3} t^{3}-3 t, y^{x}=t^{2}-3, y^{v^{x}}=2 t$

So
$\frac{d y}{d x}=\frac{y^{t}}{x^{t}}=\frac{t^{2}-3}{2+t}$ and $\frac{d^{2} y}{d x^{2}}=\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left[x^{\prime}\right]^{3}}=\frac{2 t(2+t)-1 \cdot\left(t^{2}-3\right)}{(2+t)^{3}}=\frac{(t+1)(t+3)}{(t+2)^{3}}$.

For SPs $\frac{d y}{d x}=0$ so we get $\frac{t^{2}-3}{2+t}=0$
This gives solutions of $= \pm \sqrt{3}$.
Evaluating the second derivative at these values gives $t=\sqrt{3}: \frac{d^{2} y}{d x^{2}}=\frac{+v e \mathrm{x}+v e}{+v e}=+v e$ so a minimum
and for $t=-\sqrt{3} ; \quad \frac{d^{2} y}{d x^{2}}=\frac{-v e x+v e}{+v e}=-v e \quad$ so a maximum.
For the points of inflection $\frac{d^{2} y}{d x^{2}}=0$ so $\frac{(t+1)(t+3)}{(t+2)^{2}}=0$
This is just a quadratic and has two roots $t=-1, t=-3$.

14a

4	0	6	1
2	-2	4	-1
-1	1	λ	2
0	4	-2	3
0	4	$4 \lambda+6$	9
0	0	$4 \lambda+8$	6

So $\quad x=\frac{\lambda-7}{4(\lambda+2)} y=\frac{3(\lambda+3)}{4(\lambda+2)} z=\frac{3}{2(\lambda-2)}$.

14b When $\lambda=2$ the system of equations is inconsistent.
14c When $\lambda=-2.1$ the solutions are $x=22.75, y=-6.75, z=-15$.

This is an example of an ill-conditioned set of equations.

15a $\frac{1}{(x-1)(x+2)^{2}}=\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{(x+2)^{2}}$
so $1=A(x+2)^{2}+B(x-1)(x+2)+C(x-1)$.
Choosing $x=1 ;-2 ; 0 \quad$ yield $=\frac{1}{9}, B=-\frac{1}{9} \quad C=-\frac{1}{3}$.
So $\quad \frac{1}{(x-1)(x+2)^{2}}=\frac{1}{9(x-1)}-\frac{1}{9(x+2)}-\frac{1}{3(x+2)^{2}}$.

15b This is a linear ode so the IF is
$e^{-\int \frac{1}{x-1} d x}=e^{-\ln |x-1|}=\frac{1}{x-1}$.
We now have
$\frac{y}{x-1}=\int \frac{1}{(x-1)(x+2)^{2}} d x=\int\left(\frac{1}{9(x-1)}-\frac{1}{9(x+2)}-\frac{1}{3(x+2)^{2}} d x\right)$.

This integrates to give
$\frac{1}{9} \ln |x-1|-\frac{1}{9}|x+2|+\frac{1}{3(x+2)}+C$. so $y=(x-1)\left[\frac{1}{9} \ln \left|\frac{x-1}{x+2}\right|+\frac{1}{3(x+2)}+C\right]$

16a Consider $\mathrm{n}=1$
$(\cos \theta+i \sin \theta)^{1}=\cos 1 \theta+i \sin 1 \theta$
so true for $\mathrm{n}=1$.
Assume true for $\mathrm{n}=\mathrm{k}$ and consider $\mathrm{n}=\mathrm{k}+1$
$(\cos \theta+i \sin \theta)^{k}=\cos k \theta+i \sin k \theta$
$(\cos \theta+i \sin \theta)^{k+1}=\cos (k+1) \theta+i \sin (k+1) \theta$
$(\cos \theta+i \sin \theta)^{k+1}=(\cos \theta+i \sin \theta)^{k}(\cos \theta+i \sin \theta)$
$(\cos \theta+i \sin \theta)^{k+1}=(\cos k \theta+i \sin k \theta)(\cos \theta+i \sin \theta)$

Multiply out the rhs and collect real and imaginary parts
$=\cos k \theta \cos \theta-\sin k \theta \sin \theta+i(\cos k \theta \sin \theta+\sin k \theta \cos \theta)$.

Use compound angle formulae
$=\cos (k \theta+\theta)+i \sin (k \theta+\theta)=\cos (k+1) \theta+i \sin (k+1) \theta$ as required .

Since true for $\mathrm{n}=1$ and for $\mathrm{k}+1$ by induction true for all positive integers.

Firstly apply de Moivre's theorem proved above so
$\frac{\left(\cos \frac{\pi}{18}+i \sin \frac{\pi}{18}\right)^{12}}{\left(\cos \frac{\pi}{36}+i \sin \frac{\pi}{36}\right)^{4}}=\frac{\cos \frac{11 \pi}{18}+i \sin \frac{11 \pi}{18}}{\cos \frac{4 \pi}{36}+i \sin \frac{4 \pi}{36}}$.

The denominator simplifies to $\cos \frac{\pi}{9}+i \sin \frac{\pi}{9}$.
Now multiply the top and bottom by the complex conjugate of $\cos \frac{\pi}{9}+i \sin \frac{\pi}{9}$.
$\frac{\left(\cos \frac{11 \pi}{18}+i \sin \frac{11 \pi}{18}\right)}{\left(\cos \frac{\pi}{9}+i \sin \frac{\pi}{9}\right)} \times \frac{\left(\cos \frac{11 \pi}{18}-i \sin \frac{11 \pi}{18}\right)}{\left(\cos \frac{\pi}{9}-i \sin \frac{\pi}{9}\right)}$

The dominator simplifies to $\frac{\cos ^{2} \pi \pi}{9}+\frac{\sin ^{2} \pi \pi}{9}=1$

The real part of the numerator is
$\cos \frac{11 \pi}{18} \cos \frac{2 \pi}{18}+\sin \frac{11 \pi}{18} \sin \frac{2 \pi}{18}=\cos \left(\frac{11 \pi}{18}-\frac{2 \pi}{18}\right)=\cos \frac{\pi}{2}=0$ as required.

